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Setup Consider a closed loop of current I lying on a plane, immersed within a constant
magnetic field ~B. We will now discuss why the total magnetic force on this loop is zero; but the
total torque ~τ is non-zero and in fact is the cross product between the current loop’s magnetic
moment ~µ and the magnetic field:

~τ = ~µ× ~B. (0.0.1)

The magnetic moment is, in turn, defined as the directed area of the loop times its current:

~µ = I ~A = IAn̂, (0.0.2)

where n̂ is the unit vector perpendicular to the loop given by the ‘right hand rule’. Namely, if
the n̂ is pointed at you while you are looking down at the loop, the current needs to appear
flowing in the counter-clockwise direction.

Total Force Remember the force on an infinitesimal segment of a current carrying wire
is

d~F = Id~̀× ~B. (0.0.3)

The total force is therefore

~F = I

(∮
d~̀
)
× ~B (0.0.4)

= I

(∮
dxx̂+

∮
dyŷ +

∮
dzẑ

)
× ~B (0.0.5)

= I [xx̂+ yŷ + zẑ]final position on loop
initial position on loop × ~B = ~0. (0.0.6)

The initial and final positions are the same – we are integrating around a closed loop – and
hence the integral is zero.

Area Before tackling the torque we first note that the directed area ~A can itself be
expressed as

~A = An̂ =
1

2

∮
~r × d~̀. (0.0.7)

The ~r = (x, y, z) is the position vector joining the (arbitrary) origin of the coordinate system to

the point (x, y, z) on the current loop; whereas d~̀= x̂dx+ ŷdy+ ẑdz in turn is the infinitesimal
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displacement on the loop along the direction of the current. To understand eq. (0.0.7), we note

that the infinitesimal triangle formed by the sides ~r, ~r + d~̀ and d~̀ has area

dA =
1

2
|~r + d~̀||d~̀| sinψ ≈ 1

2
|~r||d~̀| sinψ, (0.0.8)

where ψ is the angle between d~̀ and either ~r or ~r + d~̀ (the difference between the two is

infinitesimal). But remember |~a × ~b| = |~a||~b| sin θ, where θ is the angle between ~a and ~b. We
have arrived at

dA =
1

2
|~r × d~̀|. (0.0.9)

The directed area is therefore eq. (0.0.7). Finally, the magnetic moment of a single current loop
is

~µ = I ~A =
I

2

∮
~r × d~̀. (0.0.10)

Torque The torque exerted upon an infinitesimal segment of current carrying wire is

d~τ = ~r × d~F = ~r ×
(
Id~̀× ~B

)
, (0.0.11)

where we have used eq. (0.0.3). Employing the identity

~a×
(
~b× ~c

)
= (~a · ~c)~b− (~a ·~b)~c (0.0.12)

then yields

~τ = I

∮ (
(~r · ~B)d~̀− (~r · d~̀) ~B

)
. (0.0.13)

Note that the second term involves∮
~r · d~̀=

∮
(xdx+ ydy + zdz) =

∮
1

2

(
d(x2) + d(y2) + d(z2)

)
(0.0.14)

=
1

2

[
x2 + y2 + z2

]final point

initial point
= 0. (0.0.15)

Therefore, the total torque is

~τ = I

∮
(~r · ~B)d~̀. (0.0.16)

Note that the definition of total torque is actually independent of the choice of origin. That is,
suppose we choose a different origin, so ~r′ ≡ ~r + ~d (for constant ~d):

~τ =

∮ (
~r + ~d

)
×
(
Id~̀× ~B

)
(0.0.17)

=

∮ (
~r ×

(
Id~̀× ~B

)
+ ~d×

(
Id~̀× ~B

))
. (0.0.18)
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In the second term, only the d~̀ is involved in the integration, since ~d and ~B are constant; but∮
d~̀= [xx̂+ yŷ + zẑ]final

initial = ~0 and we have

~τ =

∮
~r′ ×

(
Id~̀× ~B

)
=

∮
~r ×

(
Id~̀× ~B

)
. (0.0.19)

We turn to

~µ× ~B =
I

2

(∮
~r × d~̀

)
× ~B = −I

2
~B ×

(∮
~r × d~̀

)
(0.0.20)

= −I
2

(∮
~r( ~B · d~̀)−

∮
( ~B · ~r)d~̀

)
. (0.0.21)

Let us examine the first term:∮
~r( ~B · d~̀) =

∮
(x, y, z)(Bxdx+Bydy +Bzdz). (0.0.22)

We may integrate by parts – remember
∫ b

a
fdg = [fg]ba−

∫ b

a
gdf , and since we have a closed loop

the ‘surface terms’ [. . . ]ba actually vanish – to deduce∮
~r( ~B · d~̀) = −

∮
(dx, dy, dz)(Bxx+Byy +Bzz) (0.0.23)

= −
∮

( ~B · ~r)d~̀. (0.0.24)

In other words, the two terms in eq. (0.0.21) are equal and we have

~µ× ~B = I

∮
( ~B · ~r)d~̀. (0.0.25)

Comparing equations (0.0.25) and (0.0.16), we have arrived at eq. (0.0.1).
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