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C Last update: March 15, 2022 138
These notes on Quantum Mechanics currently follow no particular order. Please do feel free

to provide feedback, error reports, etc.

1 History

The following points (very briefly!) summarize the development of quantum theory. Mainly
from Weinberg’s Chapter 1 [2].

Particle character of photons

• Black body radiation Energy density ρ of photon bath at temperature T per angular
frequency ω measured in the late 1800’s. Planck showed that the experimental results may
be fit to the formula

ρ ≡ dE

dV dω
=

~
π2

ω3

exp(~ω/(kBT ))− 1
. (1.0.1)

This is where Planck’s constant h (note: ~ ≡ h/(2π) ≈ 1.054 · · · × 10−34J s = 6.582 · · · ×
10−22MeV s) was first discovered. Nowadays the presence or absence of ~ or h in physical
predictions is oftentimes used as a zeroth-order indication of whether the effect under
consideration is quantum or classical.

Theoretical explanations tend to predict: ρ blows up at high frequency if we assume photons
are classical waves. Planck’s derivation assumed photons were coupled to a large number
of discrete harmonic oscillators at temperature T . The (correct) derivation was made by
Lorentz, by combining Gibbs’ statistical mechanical arguments with Einstein’s postulate
that light was made of particles (see below) each with energy ~ω. Namely, the hypothesis
that photons are particles instead of waves changed the energy spectrum drastically at
high frequencies.

• Photoelectric effect Einstein postulated photons – though it was G.N.Lewis who coined
the name ‘photon’ itself – to explain photoelectric effect. Individual photons need to have
energy larger than electron ‘work function’. Otherwise no electrons emitted from metal.
Millikan did experiment to verify emitted electron energy is h∆ν, and obtained a h close
to that occuring in Planck’s black body formula.

• Compton scattering If photons were particles, they would collide/scatter electrons
according to simple laws of kinematics obeying conservation of energy and momentum.
Such scatterings between X-ray photons and electrons were done by Compton – and thus
further solidified the particle nature of photons.

• Remark on photons and probabilistic QM The particle character of photons, together
with the phenomenon of how the intensity of polarized light passing through a polarizer
varies with the angle/orientation of the latter, can be used to argue for the probabilistic
character of quantum mechanics – see lecture here for elaboration.

Atomic Physics & Wave Functions
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• Discrete character of Atomic Spectra In the 1800’s and early 1900’s, the discrete char-
acter of the emission/absorption spectral lines from hot gases was not understood. These
lines formed a pattern that can be used to identify different chemical compositions. For
instance, Helium was in fact first discovered through the observation of its spectral lines
on the chromosphere of the Sun.

• Atomic Structure Understanding atomic spectra required understanding atomic struc-
ture. Rutherford, Geiger, Marsden did experiments to suggest, the atom is comprised of a
very heavy but small positively-charged nucleus, with much lighter but negatively-charged
electrons orbiting it. Later on Moseley found experimental evidence that the nucleus is
an integer multiple Z of |e|, the magnitude of the charge of the electron. (Rutherford
coined the term ‘proton’.) But Z was not A, the atomic weight; it was Chadwick who then
discovered the electrically neutral neutrons. Hence: nucleons were Z protons and A − Z
neutrons.

Classical electrodynamics would have predicted such a system to be radiatively unstable.
Nonetheless Bohr, and later one Sommerfeld, invented quantization rules that allowed one
to compute the discrete atomic energy levels. Of course, these rules are now superceded
by quantum mechanics proper.

• de Broglie, Schrödinger & Heisenberg Since light, which previously was thought to
be waves, are found to be particles as well – de Broglie suggested that electron (which
were known to be particles) are perhaps waves as well. This idea can heuristically be
connected to the Bohr-Sommerfeld quantization rules. Davisson and Germer carried out
an experiment in 1927 to show the reality of electron waves, obtaining diffraction peaks
from scattering electrons off a crystal of nickel (similar to X ray diffraction patterns).

de Broglie’s waves were for free particles. It was Schrödinger who then extended the ideas
to allow the wave to interact with a potential (the Coulomb potential for atomic electrons).
Thus quantum mechanic is born.

Around the same time, Heisenberg devised his matrix mechanics, which came to be recog-
nized as a complementary approach to quantum mechanics to the Schrödinger equation.

• Dirac & QFT The linear algebraic formulation we shall adopt, which subsumes both
Schrödinger and Heisenberg, is due to Paul Dirac [1]. Dirac is also the pioneer of quantum
field theory, the application of the rules of quantum mechanics to fields.

Probabilistic character of QM

• Max Born Even though quantum mechanics was devised by people like Schrödinger
and Heisenberg, it was Born was recognized the Schrödinger wave function squared de-
scribed the probability (per unit volume) the particle could be found at a given location.
This is the radical departure from classical physics that bothered many – including Ein-
stein.

Warning: For the rest of these notes, I am setting ~ = c = kB = 1.
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2 Basic Principles of Quantum Mechanics

Quantum Mechanics is the basic framework underlying the fundamental laws of Nature. Its
basic principles are intimately tied to Linear Algebra.

Hilbert Space Given a physical system, its possible states are vectors in an abstract
vector space, usually dubbed ‘Hilbert space’. This can be finite or infinite dimensional. Moreover,
all information of the physical system are fully contained within the ket it corresponds to.

Observables as Hermitian Operators Many physical observables in quantum me-
chanics – such as energy, position, momentum, spin, etc. – are described by Hermitian linear
operators. The possible outcomes of measuring these observables are the eigenvalues of these
Hermitian operators.

To properly describe a quantum system usually means to find as many mutually commuting
observables as possible.

Born Rule Consider an observable A, with eigenstate |λ〉. When an experimentalist
tries to measure A, the probability that the system described by |ψ〉 will be found in state |λ〉
– and thereby yield λ as the observable – is given by

P (|ψ〉 → |λ〉) = |〈λ|ψ〉|2 (2.0.1)

provided both |ψ〉 and |λ〉 have been normalized to unit length.
If λ refers to a continuous set of eigenvalues, then | 〈λ|ψ〉 |2 would instead be a probability

density – for example, | 〈~x|ψ〉 |2 is the probability per unit spatial volume for finding the quantum
system at ~x, because |~x〉 is the position eigenstate infinitely sharply localized at ~x.

Because of this probabilistic interpretation of quantum mechanics, quantum states {|ψ〉} are
really rays in a Hilbert space. If |ψ〉 describes the system at hand, the probability of finding it
in the state |ψ〉 is unity by assumption. This only fixes its length-squared | 〈ψ|ψ〉 |2 = 1; there
is no other way to distinguish between eiδ |ψ〉 and |ψ〉, for real δ, and we are thus obliged to
identify all vectors differing only by an overall phase as corresponding to the same system.

Copenhagen The Copenhagen interpretation of quantum mechanics further states that,
upon such a measurement, the original state |ψ〉 ‘collapses’ to |λ〉 if indeed the observable turned
out to be λ – at least for non-degenerate |λ〉. Suppose the system were degenerate, so that the
eigen-subspace corresponding to the eigenvalue λ can be further labeled by say σ, we may denote
these states as {|λ;σ〉}. Now, if |ψ〉 is some superposition of these λ-states, namely

|λ′〉 ≡
∑
σ

Cσ |λ;σ〉 (Cσ ∈ C) (2.0.2)

plus other states with eigenvalues not equal to λ; then upon measuring A, if the experimentalist
finds λ, the state collapses instead to this |λ′〉:

|ψ〉 → |λ′〉√
〈λ′|λ′〉

. (2.0.3)

Dynamics There is a ‘total energy’ operator, the Hamiltonian H, such that the time evo-
lution of a state |ψ(t)〉 describing some physical system is governed by the Schrödinger equation:

i∂t |ψ(t)〉 = H |ψ(t)〉 , (2.0.4)
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in units where ~ = 1.1 Physically speaking, quantum mechanics is really a framework; the
actual physical content of a given quantum theory is encoded within its Hamiltonian. This is
analogous to Newton’s laws of mechanics; in particular, “force equals mass times acceleration”
is the classical parallel to eq. (2.0.4) – the physics of Newton’s 2nd law is really specified by the
actual form of the force law.

3 Time Evolution in Quantum Mechanics

Unitary Nature of Quantum Time Evolution In quantum mechanics, the physical
system is described by a state |ψ〉 in some Hilbert space. Suppose we identify some observable
A. We know its eigenstates {|λ〉} span the whole space, and therefore we may exploit the
completeness relation I =

∑
λ |λ〉 〈λ| to express

|ψ〉 =
∑
λ

|λ〉 〈λ|ψ〉 . (3.0.1)

The probability for finding the system a given state |λ′〉 is | 〈λ′|ψ〉 |2. On the other hand, the
probability to find it in any arbitrary state must be one, since these eigenstates span the whole
space.

1 =
∑
λ

| 〈λ|ψ〉 |2 =
∑
λ

〈ψ|λ〉 〈λ|ψ〉 = 〈ψ|ψ〉 (3.0.2)

In other words, the state itself must have unit norm. Not only that, it must do so for all time.
Otherwise, it would mean the probably of find it in any state is less than 1. (Where would
it be, then?) As we see now the time evolution is unitary – probability is conserved – iff the
Hamiltonian is Hermitian.

The time-evolution equation carries Schrödinger’s name:

i∂t |ψ〉 = H |ψ〉 , (3.0.3)

−i∂t 〈ψ| = 〈ψ|H†. (3.0.4)

Consider now

∂t (〈ψ|ψ〉) = (∂t 〈ψ|) |ψ〉+ 〈ψ| (∂t |ψ〉) = i 〈ψ|H† |ψ〉 − i 〈ψ |H|ψ〉 (3.0.5)

= i 〈ψ|H† −H |ψ〉 . (3.0.6)

2If we want 〈ψ|ψ〉 = 1 to remain one for all time; its time derivative must be zero. Since this
must be true for any quantum state |ψ〉, we conclude

H = H†. (3.0.7)

1Eq. (2.0.4) is the starting point for quantum dynamics. Often though – particularly in quantum field theory
– one then quickly switches to the ‘Heisenberg picture’, where by choosing the analog of a rotating basis, the
time evolution is then transferred onto the operators.
Also notice how i occurs explicitly in Schrödinger’s equation; complex numbers are a necessity in quantum
dynamics.

2You might wonder why −i∂t 〈ψ| = 〈ψ|H†. Start with |ψ(t+ dt)〉 = |ψ(t)〉 − iHdt |ψ(t)〉+O((dt)2), which is
equivalent to eq. (3.0.3). Then take the † on both sides to obtain 〈ψ(t+ dt)| = 〈ψ(t)|+ idt 〈ψ(t)|H† +O((dt)2);
the ∂t 〈ψ| can be defined as the coefficient of dt.

6



On the other hand, if H = H† then the time derivative of 〈ψ|ψ〉 must be zero.
Time Evolution Operator The time evolution operator U is the operator that obeys

the Schrödinger equation

i∂tU(t, t′) = HU(t, t′) (3.0.8)

and the boundary condition

U(t = t′) = I. (3.0.9)

Suppose we were given some state of a system at time t′, namely |ψ(t′)〉. Then the same physical
system at t > t′ can be gotten by acting U upon it:

|ψ(t)〉 = U(t, t′) |ψ(t′)〉 . (3.0.10)

That eq. (3.0.10) solves Schrödinger’s equation is because of eq. (3.0.8); while at t = t′, we
utilize eq. (3.0.9) to check that |ψ(t)〉 → |ψ(t′)〉 is recovered.

Problem 3.1. Prove the following properties of the time-evolution operator:

U(t1, t2)U(t2, t3) = U(t1, t3) (3.0.11)

and

U(t1, t2)† = U(t2, t1); (3.0.12)

where t1,2,3 are arbitrary times.

Time-independent Hamiltonians & Stationary States Whenever the Hamiltonian
does not depend on time, the time evolution operator is simply

U(t, t′) = exp (−iH(t− t′)) . (3.0.13)

It is easy to check that e−iH(t−t′) satisfies both equations eq. (3.0.8) and (3.0.9). Under these
circumstances, if a quantum system is found in an energy eigenstate |En〉 at time t′, it will
remain there for all times, since, according to eq. (3.0.10),

|ψ(t > t′)〉 = e−iH(t−t′) |En〉 = e−iEn(t−t′) |En〉 . (3.0.14)

3.1 Properties of Evolution Operators

In this section we will collect properties of evolution operators.
Definition Given some initial/fixed time t′ and a Hermitian operator H – for our

purposes here in this section, it does not necessarily need to be the Hamiltonian – the defining
equation of the evolution operator U is

i∂tU [t, t′] = H[t]U [t, t′], U [t = t′] = I. (3.1.1)
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We shall assume H does not depend on time derivatives; in particular, since this is a first order
in time system, this means the solution to eq. (3.1.1) is unique. Taking the † on both sides also
hands us:

i∂tU
†[t, t′] = −U †[t, t′]H[t], U †[t = t′] = I. (3.1.2)

Unitary The evolution operator defined by eq. (3.1.1) is unitary.
Proof We wish to show that U †[t, t′]U [t, t′] = I. Using eq. (3.1.1), i.e., i∂tU = HU and

i∂tU
† = −U †H, we see that the time evolution of the LHS is governed by:

i∂t
(
U †[t, t′]U [t, t′]

)
= i∂tU

†[t, t′]U [t, t′] + U †[t, t′]i∂tU [t, t′] (3.1.3)

= −U †[t, t′]H[t]U [t, t′] + U †[t, t′]H[t]U [t, t′] = 0. (3.1.4)

Therefore, U †[t, t′]U [t, t′] is actually independent of t. To evaluate it for arbitrary t, therefore,
we only need to do so at t = t′. The initial/boundary condition in eq. (3.1.1) says

U †[t = t′]U [t = t′] = I. (3.1.5)

Solution I The (unique) solution to eq. (3.1.1) is

U [t, t′] = I +
∞∑
`=1

(−i)`
∫ t

t′
dt`

∫ t`

t′
dt`−1· · ·

∫ t3

t′
dt2

∫ t2

t′
dt1H[t`]H[t`−1] . . . H[t2]H[t1]. (3.1.6)

There is no restriction on whether t ≥ t′ or t < t′ here.
Proof The initial condition U [t = t′] = I is obeyed. Therefore, we need only to check the

differential equation – i.e., Schrödinger’s equation – is satisfied:

i∂tU [t, t′] =
∞∑
`=1

(−i)`−1H[t]

∫ t

t′
dt`−1

∫ t`−1

t′
dt`−2· · ·

∫ t2

t′
dt1H[t`−1] . . . H[t1]

= H[t]
∞∑
`=0

(−i)`
∫ t

t′
dt`

∫ t`

t′
dt`−1· · ·

∫ t2

t′
dt1H[t`] . . . H[t1]

= H[t]U [t, t′]

Note that the zeroth (` = 0) term of the sum on the second line is I.
Solution II The (unique) solution to eq. (3.1.1) can also be written as

U [t, t′] = Θ 1
2
[t− t′]T

{
exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
+ Θ 1

2
[t′ − t]T

{
exp

[
i

∫ t′

t

dt′′H[t′′]

]}
, (3.1.7)

where T denotes time ordering, i.e., every operator within the {. . . } is to be arranged such that
operators evaluated at later times sit to the left of operators evaluated at earlier times. For
example,

T{A[t1]B[t2]} = Θ 1
2
[t1 − t2]A[t1]B[t2] + Θ 1

2
[t2 − t1]B[t2]A[t1],
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and T denotes anti time ordering, i.e., every operator within the {. . . } is to be arranged such
that operators evaluated at earlier times sit to the left of operators evaluated at later times. For
example,

T{A[t1]B[t2]} = Θ 1
2
[t2 − t1]A[t1]B[t2] + Θ 1

2
[t1 − t2]B[t2]A[t1]. (3.1.8)

Here the step function is defined as

Θ 1
2
[t− t′] = 1, if t > t′

Θ 1
2
[t− t′] = 0, if t < t′

Θ 1
2
[t− t′] =

1

2
, if t = t′.

Also the (anti) time ordered exponential(s) in eq. (3.1.7) is formal – they are really defined by
its Taylor expansion:

T

{
exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
≡ T

{
I +

∞∑
`=1

(−i)`

`!

∫ t

t′
dt`· · ·

∫ t

t′
dt1H[t`] . . . H[t1]

}
, t ≥ t′,

(3.1.9)

and

T

{
exp

[
i

∫ t′

t

dt′′H[t′′]

]}
≡ T

{
I +

∞∑
`=1

i`

`!

∫ t′

t

dt`· · ·
∫ t′

t

dt1H[t`] . . . H[t1]

}
, t < t′.

(3.1.10)

Proof Let us show that our solution for U satisfies eq. (3.1.1). The boundary condition
U [t = t′] = I is manifest. We first note that T (applied to eq. (3.1.9)) commutes with both ∂t′
and with ∂t. This is because T does not involve either t nor t′, since all the operators H are
evaluated at the intermediate times t1 through t`. Therefore we may deduce,

i∂tU [t, t′] = δ[t− t′]T
{

exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
− δ[t′ − t]T

{
exp

[
i

∫ t′

t

dt′′H[t′′]

]}

+ Θ 1
2
[t− t′]T

{
i∂t exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
+ Θ 1

2
[t′ − t]T

{
i∂t exp

[
i

∫ t′

t

dt′′H[t′′]

]}
.

The derivatives of the two Θ-functions are each proportional to a δ-function, but one is negative
of the other.3 Therefore the terms on the RHS of the first line cancel. What remains is the
differentiation of the exponentials. We have

T

{
i∂t exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
, t ≥ t′

3We really have ∂zΘ1/2[z] = (1/2)δ[z−0+]+(1/2)δ[z+0+]. To see this, we integrate from some z = z0 < 0 to
some arbitrary z. On both the LHS and RHS, if z < 0, the answer is zero. If z = 0, the LHS has to yield 1/2, by
definition; whereas on the RHS the integral picks up 1/2 due to the non-trivial contribution from δ[z + 0+] and
zero contribution from δ[z − 0+]. Once z > 0, the LHS yields unity; while the RHS now receives a contribution
of 1/2 from each δ-function, thereby giving us unity. As far as the problem at hand is concerned, however, we
can say δ[z − 0+] + δ[z + 0+] = 2δ[z]. Our results here will probably not be affected if we had instead defined
Θ[0] ≡ 1.
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= T

{
∞∑
`=1

(−i)`−1

`!

∑̀
s=1

∫ t

t′
dt` . . .

∫̂ t

t′
dts· · ·

∫ t

t′
dt1H[t`] . . . H[ts+1]H[t]H[ts−1] . . . H[t1]

}

= H[t]T

{
∞∑
`=1

(−i)`−1

`!

∑̀
s=1

∫ t

t′
dt`−1· · ·

∫ t

t′
dt1H[t`−1] . . . H[t1]

}

= H[t]T

{
∞∑
`=1

(−i)`−1

(`− 1)!

∫ t

t′
dt`−1· · ·

∫ t

t′
dt1H[t`−1] . . . H[t1]

}
≡ H[t]T

{
exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
.

The hat symbol indicates the ts-integral is being omitted. On the second equality, we have
re-labeled the integration variables to run from t1 to t`−1; and, we have pulled out H[t] to the
left of the time ordering operator, since t is the latest time. Note the subtlety in this calculation
– because H is an operator, we cannot assume H[ti] and H[tj] commute if they are evaluated at
different times; in particular,

i∂t exp

[
−i
∫ t

t′
dt′′H[t′′]

]
6= H[t] exp

[
−i
∫ t

t′
dt′′H[t′′]

]
i∂t exp

[
−i
∫ t

t′
dt′′H[t′′]

]
6= exp

[
−i
∫ t

t′
dt′′H[t′′]

]
H[t].

It is the presence of the time ordering instruction that allows us to pull H[t] all the way to the
left. A similar calculation yields

T

{
i∂t exp

[
i

∫ t′

t

dt′′H[t′′]

]}
, t < t′

= T


∞∑
`=1

i`−1

`!

∑̀
s=1

∫ t′

t

dt` . . .

∫̂ t′

t

dts· · ·
∫ t′

t

dt1H[t`] . . . H[ts+1](−i2H[t])H[ts−1] . . . H[t1]


= H[t]T

{
∞∑
`=1

i`−1

`!

∑̀
s=1

∫ t′

t

dt`−1· · ·
∫ t′

t

dt1H[t`−1] . . . H[t1]

}

= H[t]T

{
∞∑
`=1

i`−1

(`− 1)!

∫ t′

t

dt`−1· · ·
∫ t′

t

dt1H[t`−1] . . . H[t1]

}
≡ H[t]T

{
exp

[
i

∫ t′

t

dt′′H[t′′]

]}
.

This means we have proven our solution for U satisfies eq. (3.1.1).
(Solution II)† We also have

U †[t, t′] = Θ 1
2
[t− t′]T

{
exp

[
i

∫ t

t′
dt′′H[t′′]

]}
+ Θ 1

2
[t′ − t]T

{
exp

[
−i
∫ t′

t

dt′′H[t′′]

]}
, (3.1.11)

i.e.,

U †[t, t′] = U [t′, t]. (3.1.12)
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Proof Simply take the Taylor series expansion in eq. (3.1.9) and take the † term by term.4

First, (−i)` is replaced with i` and vice versa. Second, for some arbitrary positive integer s, if
ts > ts−1 > · · · > t2 > t1, then

(H[ts] . . . H[t1])† = H[t1] . . . H[ts].

That is, a time ordered product of operators become an anti time ordered product. Taking the †

on both sides once more shows an anti time ordered product of operators become a time ordered
product.

Corollaries to Solution II The differential equation with respect to t′ is

i∂t′U [t, t′] = −U [t, t′]H[t′]. (3.1.13)

Therefore

i∂t′U
†[t, t′] = H[t′]U †[t, t′]. (3.1.14)

Notice these equations with respect to t′ do not need to be imposed externally; they are a
consequence of the defining equations with respect to t (i.e., eq. (3.1.1)).

Proof Let us prove eq. (3.1.13) via a direct calculation. We have,

T

{
i∂t′ exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
, t ≥ t′

= T

{
∞∑
`=1

(−i)`−1

`!

∑̀
s=1

∫ t

t′
dt` . . .

∫̂ t

t′
dts· · ·

∫ t

t′
dt1H[t`] . . . H[ts+1](−H[t′])H[ts−1] . . . H[t1]

}

= −T

{
∞∑
`=1

(−i)`−1

`!

∑̀
s=1

∫ t

t′
dt`−1· · ·

∫ t

t′
dt1H[t`−1] . . . H[t1]

}
H[t′]

= −T

{
∞∑
`=1

(−i)`−1

(`− 1)!

∫ t

t′
dt`−1· · ·

∫ t

t′
dt1H[t`−1] . . . H[t1]

}
H[t′] ≡ −T

{
exp

[
−i
∫ t

t′
dt′′H[t′′]

]}
H[t′].

and

T

{
i∂t′ exp

[
i

∫ t′

t

dt′′H[t′′]

]}
, t < t′

= T


∞∑
`=1

i`−1

`!

∑̀
s=1

∫ t′

t

dt` . . .

∫̂ t′

t

dts· · ·
∫ t′

t

dt1H[t`] . . . H[ts+1](i2H[t′])H[ts−1] . . . H[t1]


= −T

{
∞∑
`=1

i`−1

`!

∑̀
s=1

∫ t′

t

dt`−1· · ·
∫ t′

t

dt1H[t`−1] . . . H[t1]

}
H[t′]

= −T

{
∞∑
`=1

i`−1

(`− 1)!

∫ t′

t

dt`−1· · ·
∫ t′

t

dt1H[t`−1] . . . H[t1]

}
H[t′] ≡ −T

{
exp

[
i

∫ t′

t

dt′′H[t′′]

]}
H[t′].

4Note: as long as the (anti) time ordered symbol is in place, the order of the operators within the {. . . } is
immaterial.
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A much simpler proof would be to start from the Schrödinger equation i∂tU [t, t′] = HU [t, t′],
take the dagger on both sides, and employing eq. (3.1.12).

−i∂tU †[t, t′] = U †[t, t′]H, (3.1.15)

−i∂tU [t′, t] = U [t′, t]H. (3.1.16)

Group property The evolution operator obeys

U [t, t′′]U [t′′, t′] = U [t, t′], (3.1.17)

with no restriction on the relative chronologies of t, t′ and t′′.
Proof We have to show that both sides obey the defining equations in eq. (3.1.1). It is

manifest that i∂tU = HU is obeyed and, as t → t′, the RHS tends to I. Thus, we merely have
to check the boundary condition that U [t, t′′]U [t′′, t′] tends to the identity when t→ t′: namely,
U [t′, t′′]U [t′′, t′] = U †[t′′, t′]U [t′′, t′] = I, where eq. (3.1.12) was used in the first equality and the
unitary property of U was employed in the second equality.

Operator insertion If we insert an operator Q in eq. (3.1.17):

U [t, t′]Q[t′]U [t′, t] = U †[t′, t]Q[t′]U [t′, t] = U [t, t′]Q[t′]U †[t, t′]

= Q[t′] +
∞∑
`=1

(−i)`
∫ t

t′
dt`

∫ t`

t′
dt`−1· · ·

∫ t3

t′
dt2

∫ t2

t′
dt1

×
[
H[t`],

[
H[t`−1],

[
. . .
[
H[t2],

[
H[t1], Q[t′]

]]
. . .
]]]

.

Proof As t → t′ we have the boundary condition U [t, t′]Q[t′]U [t′, t] → Q[t′]. This is
obeyed on the RHS too. We may now check that both the LHS and RHS obeys the same first
order in time differential equation with respect to t. Differentiating LHS yields

i∂t
(
U [t, t′]Q[t′]U †[t, t′]

)
= H[t]U [t, t′]Q[t′]U †[t, t′]− U [t, t′]Q[t′]U †[t, t′]H[t]

≡
[
H[t], U [t, t′]Q[t′]U †[t, t′]

]
.

Denote

R[t, t′] ≡ Q[t′] +
∞∑
`=1

(−i)`
∫ t

t′
dt`

∫ t`

t′
dt`−1· · ·

∫ t3

t′
dt2

∫ t2

t′
dt1

[
H[t`],

[
H[t`−1],

[
. . .
[
H[t1], Q[t′]

]
. . .
]]]

.

Differentiating the RHS gives us

i∂tR[t, t′] =
∞∑
`=1

(−i)`−1
[
H[t],

∫ t

t′
dt`−1

∫ t`−1

t′
dt`−2· · ·

∫ t3

t′
dt2

∫ t2

t′
dt1

[
H[t`−1],

[
. . .
[
H[t1], Q[t′]

]
. . .
]]]

=
[
H[t],R[t, t′]

]
. (3.1.18)
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4 Heisenberg & Schrödinger Pictures:

Time-Independent Hamiltonian

Just as choosing the right coordinates is often an important step in simplifying a given problem,
the choice of the right basis in a given quantum mechanical problem can often provide the
crucial insights. Moreover, recall that the change-of-basis between two orthonormal basis is
implemented via a unitary transformation. In this section we will study the change-of-basis
related to time-evolution itself, in the case where the Hamiltonian H is time-independent.

Schrödinger Picture If |ψ(t)〉 describes the physical state of a quantum system, the
Schrödinger picture is defined as the basis where the Schrödinger equation is obeyed:

i∂t |ψ(t)〉 = H |ψ(t)〉 . (4.0.1)

If |ψ(t0)〉 is the state at time t0, you may verify through a direct calculation the solution to
|ψ(t > t0)〉 is given by

|ψ(t ≥ t0)〉 = U(t, t0) |ψ(t0)〉 , (4.0.2)

U(t, t′) ≡ exp (−iH(t− t′)) , U(t = t′) = I. (4.0.3)

Eigen-spectrum Within the Schrödinger picture, the position, momentum and angular mo-
mentum operators do not depend on time; and their eigenstates and values also do not depend
on time. This statement also holds for any other time-independent observable A.

A |a〉 = a |a〉 : ∂t |a〉 = 0 if ∂tA = 0. (4.0.4)

If an observable A does not commute with the Hamiltonian H, then in general if a system at
time t0 is found in one of its eigenstates |a〉, at a late time t > t0 it will no longer be the same
eigenstate. From eq. (4.0.2),

|ψ(t > t0)〉 = e−iH(t−t0) |a〉 (4.0.5)

is usually not proportional to |a〉 itself, for arbitrary |a〉, for it were then e−iH(t−t0) |a〉 = λa |a〉
(for some eigenvalue λa) would be a simultaneous eigenket of both exp(−iH(t− t0)) and A and
thus [H,A] = 0.

Heisenberg Picture The Heisenberg picture is usually defined using its relation to the
Schrödinger picture. There is also a need to choose some time t0 where the two pictures coincide.

The motivation goes as follows, suppose |ψ(t)〉 is a physical state in the Schrödinger picture
and O is some (not necessarily Hermitian) time-independent operator. The time-dependent
expectation value of O with respect to this physical state is

〈ψ(t) |O|ψ(t)〉 . (4.0.6)

But using eq. (4.0.2),

〈ψ(t) |O|ψ(t)〉 =
〈
ψ(t0)

∣∣U(t, t0)†OU(t, t0)
∣∣ψ(t0)

〉
. (4.0.7)
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Within the Heisenberg picture, physical states {|ψ〉H} are defined to be the {ψ(t0)} within the
Schrödinger picture at time t0, namely

|ψ〉H ≡ |ψ(t0)〉 , (4.0.8)

and are therefore time-independent.
Linear operators {OH(t)} in the Heisenberg picture are related to those in the Schrödinger

picture {O} through the change-of-basis implemented by the time evolution operator itself (cf.
eq. (4.0.3)). Since U depends on time, this implies OH typically depends on time too:

OH(t) ≡ U(t, t0)†OU(t, t0). (4.0.9)

An exception occurs wheneverO commutes withH. For instance, wheneverH is time-independent,
it commutes with itself for all times, and therefore

U †(t, t0)HU(t, t0) = e+iH(t−t0)He−iH(t−t0) = e+iH(t−t0)e−iH(t−t0)H = H. (4.0.10)

We highlight this important exception.

Whenever the Hamiltonian H is time independent, it takes the same form in both
the Heisenberg and Schrödinger pictures.

Returning to the defining Heisenberg picture equations (4.0.8) and (4.0.9), we see that eq. (4.0.7)
may now be written as

〈ψ(t) |O|ψ(t)〉 = H 〈ψ |OH(t)|ψ〉H . (4.0.11)

Eigen-spectrum Within the Heisenberg picture, eq. (4.0.9) tells us that observables are

generically time-dependent. For example, whenever the position ~X, momentum ~P , and/or

angular momentum operators ~J do not commute with the Hamiltonian H, they become time-
dependent in the Heisenberg picture.

~XH(t) = U(t, t0)† ~XU(t, t0), (4.0.12)

~PH(t) = U(t, t0)† ~PU(t, t0), (4.0.13)

~JH(t) = U(t, t0)† ~JU(t, t0). (4.0.14)

This in turn implies, since observables {A} are generically time-dependent, their eigen-states
become generically time dependent too:

AH(t) |a, t〉H = a |a, t〉H . (4.0.15)

Problem 4.1. Equations-of-Motion Whenever O does not commute with H, then com-
puting U †OU may not be easy.5 An alternate perspective is to tackle the following first order
equation. Prove that

ȮH(t) = i [H,OH(t)] . (4.0.16)

5One may always write down an infinite series expansion using the Baker-Campbell-Hausdorff lemma.
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If ~XH, ~PH and ~JH are the position, momentum and orbitary angular momentum operators of the
simple harmonic oscillator with Hamiltonian

H =
1

2
~P 2 +

ω2

2
~X2, (4.0.17)

solve them in terms of their Schrödinger counterparts ~X, ~P and ~J .

Ehrenfest Theorem Suppose the Hamiltonian is the usual kinetic plus potential energy,
namely

H =
~P 2

2m
+ V ( ~X). (4.0.18)

We will now see that Newton’s second law is recovered at the operator level, namely

m ~̈XH = −~∇V ( ~XH). (4.0.19)

To see this, we simply employ eq. (4.0.16) and[
X i

(s), P(s)j

]
= iδij ⇔ U(t, t0)†

[
X i

(s), P(s)j

]
U(t, t0) =

[
X i

(H), P(H)j

]
= iδij. (4.0.20)

Suppressing the subscript H, but working in the Heisenberg picture – the second derivative reads

Ẍ i = i
[
H, Ẋ i

]
= i2

[
H,
[
H,X i

]]
= −

[
~P 2

2m
+ V,

[
~P 2

2m
,X i

]]
= −(2m)−1

[
~P 2

2m
+ V, Pj

[
Pj, X

i
]

+
[
Pj, X

i
]
Pj

]
= im−1

[
V ( ~X), Pi

]
(4.0.21)

~̈X = −m−1~∇V ( ~X). (4.0.22)

Problem 4.2. Anti-Time-Evolution If at arbitrary time t, the |a, t〉H is an eigenstate of
the observable AH(t), show that

|a, t〉H = U(t, t0)† |a〉 . (4.0.23)

Namely, eigenkets in the Heisenberg picture are the anti-time-evolved Schrödinger picture ones.
Explain why the eigenvalues do not depend on time, as long as the operator A in the Schrödinger
picture is time-independent.

The completeness relation of observables {A} in the Schrödinger picture reads∑
a

|a〉 〈a| = I, A |a〉 = a |a〉 . (4.0.24)

In the Heisenberg picture, they read∑
a

|a, t〉H H 〈a, t| = I, AH(t) |a, t〉H = a |a, t〉H . (4.0.25)
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For instance, if ~X is the position operator and ~x is its eigenket,∫
dD~x |~x, t〉H H 〈~x, t| = I. (4.0.26)

To demonstrate the validity of eq. (4.0.25), we employ eq. (4.0.23) followed by the completeness
relation in the Schrödinger picture.∑

a

|a, t〉H H 〈a, t| = U(t, t0)†
∑
a

|a〉 〈a|U(t, t0) = U(t, t0)†IU(t, t0) = I. (4.0.27)

Of course, we could also simply recognize eq. (4.0.9), with O = A here, as being a change-of-
basis, which does not affect the Hermitian character of the operator in question.

Problem 4.3. Show that

H 〈~x, t| a, t〉H = 〈~x| a〉 . (4.0.28)

That is, the position-representation of some eigenket of an observable is picture-independent.

Problem 4.4. Energy Eigenket Expectation Value Explain why

〈E |O|E〉 = H 〈E, t? |OH(t)|E, t?〉H , (4.0.29)

where t? is an arbitrary time. In the Schrödinger picture, recall that, if the physical system is
in the energy eigenstate |ψ(t0)〉 = |E〉, then 〈ψ(t) |O|ψ(t)〉 = 〈E |O|E〉; i.e., the time t in |ψ(t)〉
is immaterial. This result in eq. (4.0.29) tells us the same statement holds in the Heisenberg
picture.
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5 Interaction Picture & Time Evolution

Motivation In many situations, the Hamiltonian H is the sum of an exactly solvable (or,
at least, well understood) H0 and a complicated but ‘small’ perturbation H ′.

H = H0 +H ′(t) (5.0.1)

For instance, H0 might describe the hydrogen atom and H ′ its interaction with an externally
applied electromagnetic field. We shall see how the interaction picture allows us to re-write
Schrödinger’s equation in such a way to implement time evolution as a perturbation theory in
powers of H ′.

The interpretation will be as follows. We shall assume H ′ is weak enough, so that the
eigenstates of H0 can still be treated as the possible outcomes of physical experiments. Hence,
the primary question is – with the passage of time – how does H ′ drive transitions between the
eigenstates of H0?

Time Evolution We will define the interaction picture in terms of the Schrödinger
picture. Denoting the former by the subscript ‘I’ and the latter by ‘s’, physical states are related
via

|ψ(t)〉I = U †0 |ψ(t)〉s , (5.0.2)

where U0 is the time evolution operator corresponding to H0, namely

i∂tU0(t, t0) = H0U0(t, t0) and U0(t = t0) = I. (5.0.3)

Referring to eq. (5.0.2), the t0 is therefore the time where the Schrödinger and interaction
pictures coincide.

The linear operators are related via

OI = U †0OsU0. (5.0.4)

This is to preserve the form of the matrix element between arbitrary states |ψ1,2〉:

I 〈ψ1(t) |OI|ψ2(t)〉I = s

〈
ψ1(t)

∣∣∣U0U
†
0OsU0U

†
0

∣∣∣ψ2(t)
〉

s
(5.0.5)

= s 〈ψ1(t) |Os|ψ2(t)〉s . (5.0.6)

The eigenkets {|a; t〉I} of an observable AI within the interaction picture are related to its
Schrödinger picture counterparts {|a; t〉s} of an observable As through

|a; t〉I = U0(t, t0)† |a〉s ; (5.0.7)

because

AI |a; t〉I = U †0AsU0U
†
0 |a〉s (5.0.8)

= U †0As |a〉s = a · U †0 |a〉s (5.0.9)

= a |a; t〉I . (5.0.10)

17



Let us examine the time evolution of an interaction picture state. If, within the Schrödinger
picture,

i∂tU(t, t′) = HU(t, t′) = (H0 +H ′)U(t, t′) and U(t = t′) = I; (5.0.11)

then according to eq. (5.0.2),

|ψ(t)〉I = UI(t, t0) |ψ(t0)〉s , (5.0.12)

UI(t, t0) ≡ U0(t, t0)†U(t, t0). (5.0.13)

This UI is not the Schrödinger picture U re-expressed in interaction picture,6 but we are abusing
notation somewhat for technical convenience. In any case, UI does take a Schrödinger picture
initial state and evolves it to an interaction picture state at time t. What is important is its
equations-of-motion.

iU̇I = −(iU̇0)†U + U0(iU̇) (5.0.14)

= U †0(−H0)U + U0HU (5.0.15)

= U †0(−H0 +H0 +H ′)U = U †0H
′U0U

†
0U (5.0.16)

= H ′IUI. (5.0.17)

In words: the UI obeys the Schrödinger equation, but with respect to the Hamiltonian H ′I written
in the interaction picture.

Operator Equation Admitting Dyson Series As Solution Consider the operator
equation

Ȧ = BA, (5.0.18)

where the overdot denotes time derivative, and both A and B are operators. The solution is the
Dyson series

A(t) =

(
I +

+∞∑
`=1

∫ t

t0

ds`

∫ s`

t0

ds`−1· · ·
∫ s3

t0

ds2

∫ s2

t0

ds1B(s`)B(s`−1) . . . B(s2)B(s1)

)
A(t0).

(5.0.19)

Note that the ordering of these Bs and A(t0) are important, because they are operators. From
eq. (5.0.14) and the initial condition UI(t = t0) = I, we may therefore solve the UI solely in
terms of H ′I.

UI(t, t0) =

(
I +

+∞∑
`=1

(−i)`
∫ t

t0

ds`

∫ s`

t0

ds`−1· · ·
∫ s3

t0

ds2

∫ s2

t0

ds1H
′
I(s`)H

′
I(s`−1) . . . H ′I(s2)H ′I(s1)

)
.

(5.0.20)

6The interaction picture evolution operator, namely U†
0 (t, t0)U(t, t0)U0(t, t0), does not in fact evolve the

initial state properly – i.e., |ψ(t)〉I 6= U†
0 (t, t0)U(t, t0)U0(t, t0) |ψ(t0)〉I – because the state it acts on (namely,

|ψ(t0)〉I = |ψ(t0)〉s) is not evaluated at the same time as the operator itself.
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Time-Dependent Perturbation Theory We will assume H0 is a time-independent Her-
mitian operator; whereas H ′ is a time-dependent one. As we shall witness, the interaction picture
physical ket may therefore be solved in terms of the eigenkets of H0, which obey

H0

∣∣Ēn〉s
= Ēn

∣∣Ēn〉s
. (5.0.21)

From eq. (5.0.7) and the time-independence of the H0 to recall U0(t, t0) = exp(−iH0(t− t0)),∣∣Ēn; t
〉

I
= eiĒn(t−t0)

∣∣Ēn〉s
= U0(t, t0)†

∣∣Ēn〉s
. (5.0.22)

The solution, according to eq. (5.0.20) inserted into eq. (5.0.12), is

|ψ(t)〉I = UI(t, t0) |ψ(t0)〉s (5.0.23)

=

(
I +

+∞∑
`=1

(−i)`
∫ t

t0

ds`

∫ s`

t0

ds`−1· · ·
∫ s3

t0

ds2

∫ s2

t0

ds1H
′
I(s`)H

′
I(s`−1) . . . H ′I(s2)H ′I(s1)

)
|ψ(t0)〉s .

Employing eq. (5.0.7)

U0 |a; t〉I = |a〉s and I 〈a; t| = s 〈a|U0; (5.0.24)

as well as |ψ(t)〉s = U(t, t0) |ψ(t0)〉, the quantum amplitude for finding the physical system in
the eigenstate

∣∣Ēn〉 at time t is given by

s

〈
Ēn
∣∣ψ(t)

〉
s

= s

〈
Ēn
∣∣U0(t, t0)U0(t, t0)†U(t, t0)

∣∣ψ(t0)
〉

s
(5.0.25)

= e−iĒn(t−t0)
s

〈
Ēn |UI(t, t0)|ψ(t0)

〉
s
. (5.0.26)

The probability that the quantum will be found in the state
∣∣Ēn〉s

at time t > t0 is given by

P
(
t0, |ψ0〉 → t,

∣∣Ēn〉) = |cn(t)|2; (5.0.27)

where, following Weinberg, we have defined

cn(t) ≡ s

〈
Ēn |UI(t, t0)|ψ(t0)

〉
s

= eiĒn(t−t0)
s

〈
Ēn
∣∣ψ(t)

〉
s
. (5.0.28)

Moreover the physical state itself can now be expressed as

|ψ(t)〉s =
∑
`

∣∣Ē`〉s s

〈
Ē`
∣∣ψ(t)

〉
s

(5.0.29)

=
∑
`

e−iĒ`(t−t0)c`(t)
∣∣Ē`〉 . (5.0.30)

Since we know the differential equation for UI, we may readily obtain one for cn(t).

i∂tcn(t) = s

〈
Ēn |H ′I(t)UI(t, t0)|ψ(t0)

〉
s

(5.0.31)

= s

〈
Ēn

∣∣∣U †0H ′(t)U0UI(t, t0)
∣∣∣ψ(t0)

〉
s

(5.0.32)
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= s

〈
Ēn
∣∣ eiĒn(t−t0)H ′s(t)e

−iH0(t−t0)
∑
`

∣∣Ē`〉s s

〈
Ē`
∣∣UI(t, t0) |ψ(t0)〉s . (5.0.33)

We arrive at

i∂tcn(t) = H ′n`(t)c`(t), (5.0.34)

H ′n`(t) ≡ ei(Ēn−Ē`)(t−t0)
s

〈
Ēn
∣∣H ′s(t) ∣∣Ē`〉s

= I

〈
Ēn, t

∣∣H ′s(t) ∣∣Ē`, t〉I
. (5.0.35)

First Order Time-Dependent PT To first order in H ′I, we may employ eq. (5.0.23) to
deduce the quantum transition amplitude is

cn(t) = s

〈
Ēn
∣∣ I− i∫ t

t0

H ′I(s)ds+ . . . |ψ(t0)〉 . (5.0.36)

In particular, if the physical system began at some eigenstate of H0, say

|ψ(t0)〉 =
∣∣Ēa〉s

; (5.0.37)

then we see that the transition amplitude M(Ēa → ~Eb) is provided by the expression

M(Ēa → ~Eb) ≡ eiĒb(t−t0)
s

〈
Ēb
∣∣ψ(t)

〉
s

(5.0.38)

= δba − i
∫ t

t0

s

〈
Ēb

∣∣∣U †0H ′s(τ)U0

∣∣∣ Ēa〉
s
dτ + . . . (5.0.39)

= δba − i
∫ t

t0

ei(Ēb−Ēa)(s−t0)
s

〈
Ēb |H ′s(τ)| Ēa

〉
s
dτ + . . . (5.0.40)

If, furthermore, we are interested in nontrivial transitions (b 6= a); then the probability of such
a process is – up to first order in perturbation theory – given by∣∣∣M(

Ēa → ~Eb;
b 6=a
t0→t

)∣∣∣2 ≈ ∣∣∣∣∫ t

t0

ei(Ēb−Ēa)s
s

〈
Ēb |H ′s(τ)| Ēa

〉
s
dτ

∣∣∣∣2 . (5.0.41)

Constant Perturbation & Fermi’s Golden Rule version I We start with a constant
perturbation V that is turned on after t > 0; namely,

Hs(s < 0) = 0, (5.0.42)

Hs(s ≥ 0) = V (time-independent). (5.0.43)

To first order, we evaluate

M
(
Ēa → ~Eb;

b 6=a
t0→t

)
=

∫ t

t0

ei(Ēb−Ēa)s
s

〈
Ēb |H ′s(s)| Ēa

〉
s

(5.0.44)

= Vba

∫ t

t0

ei(Ēb−Ēa)sΘ(s)ds (5.0.45)

Vba ≡ s

〈
Ēb
∣∣V ∣∣Ēa〉s

. (5.0.46)
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As long as the initial time t0 is negative, it does not matter what its actual numerical value
is. Moreover, for t0 < t < 0, the amplitude is zero since H ′ = 0. Hence, the amplitude is
proportional to Θ(t).

M
(
Ēa → ~Eb;

b6=a
t0→t

)
= Θ(t) Vba

ei(Ēb−Ēa)t − 1

i(Ēb − Ēa)
(5.0.47)

= Θ(t) Vbae
i(Ēb−Ēa)t/2 e

i(Ēb−Ēa)t/2 − e−i(Ēb−Ēa)t/2

i(Ēb − Ēa)
(5.0.48)

= Θ(t) Vbae
i(Ēb−Ēa)t/2 2 sin

(
(Ēb − Ēa)t/2

)
Ēb − Ēa

. (5.0.49)

Because Θ(t)2 = Θ(t), we have

∣∣∣M(
Ēa → ~Eb;

b6=a
t0→t

)∣∣∣2 = Θ(t)|Vba|2t2
(

sin
(
(Ēb − Ēa)t/2

)
(Ēb − Ēa)t/2

)2

. (5.0.50)

This (sin(∆E · t/2)/(∆E · t/2))2 becomes more and more sharply peaked around the origin
∆E · t/2 ≈ 0 as t→∞. Suppose we ask, what is the number of ways that the quantum system
can transition from Ēa to a ‘region’ within the Hilbert space denoted by {Ēb}:

P
(
Ēa → {Ēb}

)
=

∫ ∣∣∣M(
Ēa → ~Eb;

b 6=a
t0→t

)∣∣∣2 ρ (Ēb) dĒb. (5.0.51)

The ρ(Ēb) is the density of quantum states at energy Ēb, assuming there is a quasi-continuum
of states. In the long time limit, we may invoke the identity (see, for e.g., eq. 5.7.31)

lim
t→∞

sin2(∆E · t)
∆E2 · t

= πδ (∆E) . (5.0.52)

Hence, the total number of late time transitions is

P
(
Ēa → {Ēb}; t→∞

)
= lim

t→∞

∫
|Vba|2t

sin
(
(Ēb − Ēa)t/2

)2

((Ēb − Ēa)/2)2 · t
ρ
(
Ēb
)

dĒb (5.0.53)

=

∫
|Vba|2t(2π)δ

(
Ēb − Ēa

)
ρ
(
Ēb
)

dĒb (5.0.54)

≡ 2π〈〈|Vba|2〉〉ρ
(
Ēb ≈ Ēa

)
· t. (5.0.55)

The 〈〈|Vba|2〉〉 denotes the average of |Vba|2 over the states {Ēb} that lie very close to Ēa. The
rate of transition is simply its time derivative.

d

dt
P
(
Ēa → {Ēb ≈ Ēa}; t→∞

)
= 2π〈〈|Vba|2〉〉ρ

(
Ēb ≈ Ēa

)
. (5.0.56)

Harmonic Perturbation & Fermi’s Golden Rule version II Consider a perturbation
that is purely harmonic, with positive frequency (ω > 0),

H ′(t) = −V0e
−iωt − V †0 e+iωt. (5.0.57)
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Here, V0 is an arbitrary but time-independent perturbation, whose eigenvalues we will assume
are much smaller than those of H0.

For simplicity, let us now consider the case where the system began at some energy eigenstate∣∣Ēa〉 an infinitely long time ago, i.e., t0 → −∞; while the observation is made an infinitely long
time in the future, i.e., t→ +∞. Eq. (5.0.41) reads∣∣∣M(

Ēa → ~Eb;
b 6=a
t0→t

)∣∣∣2 (5.0.58)

≈
∣∣∣∣∫

R
ei(Ēb−Ēa)s

s

〈
Ēb

∣∣∣V0e
−iωτ + V †0 e

+iωτ
∣∣∣ Ēa〉

s
dτ

∣∣∣∣2
=
∣∣∣ s

〈
Ēb

∣∣∣V0(2π)δ
(
Ēa − Ēb + ω

)
+ V †0 (2π)δ

(
Ēa − Ēb − ω

)∣∣∣ Ēa〉
s

∣∣∣2
=
∣∣(2π)δ

(
Ēa + ω − Ēb

)
s

〈
Ēb |V0| Ēa

〉
s

∣∣2 +
∣∣∣(2π)δ

(
Ēa − ω − Ēb

)
s

〈
Ēb

∣∣∣V †0 ∣∣∣ Ēa〉
s

∣∣∣2 .
In the last line, there are no cross terms, which would otherwise contain δ(Ēa − Ēb − ω)δ(Ēa −
Ēb +ω), because it is not possible for the arguments to be simultaneously equal to zero; namely

Ēa − Ēb = ω = −ω (5.0.59)

cannot be true unless ω = 0. In fact, the two Dirac δ-functions correspond to

• Ēa +ω = Ēb: (Absorption of ω−quanta) Ending up with a higher energy indicates an
external quanta of energy ω was absorbed.

• Ēa − ω = Ēb: (Emission of ω−quanta) Ending up with a lower energy indicates an
external quanta of energy ω was emitted.

Now, there is a mathematical issue with the last equality of eq. (5.0.58). It contains terms like(
(2π)δ

(
Ēa − Ēb − ω

))2
= (2π)δ

(
Ēa − Ēb − ω

)
· (2π)δ (0) and (5.0.60)(

(2π)δ
(
Ēa − Ēb + ω

))2
= (2π)δ

(
Ēa − Ēb + ω

)
· (2π)δ (0) . (5.0.61)

The interpretation of the 2πδ(0) is as follows(
(2π)δ

(
Ēa − Ēb − ω

))2
= (2π)δ

(
Ēa − Ēb − ω

) ∫
R
ei(Ēa−Ēb−ω)sds (5.0.62)

= (2π)δ
(
Ēa − Ēb − ω

)
lim
T→∞

∫ +T

−T
ds (5.0.63)

= (2π)δ
(
Ēa − Ēb − ω

)
· (∞-time duration); (5.0.64)

Dividing eq. (5.0.58) throughout by (2π)δ(0) then allows us to re-interpret the result as the rate
per unit time of transitioning from Ēa to Ēb. This result is the celebrated Fermi’s Golden Rule:

Number of Ēa → Ēb transitions, with b 6= a

Total time
≡

∣∣∣M(
Ēa → ~Eb;

b 6=a
t0→t

)∣∣∣2
2πδ(0)

(5.0.65)

= (2π)δ
(
Ēa − Ēb − ω

) ∣∣
s

〈
Ēb |V0| Ēa

〉
s

∣∣2︸ ︷︷ ︸
Emission of ω−quanta

+ (2π)δ
(
Ēa − Ēb + ω

) ∣∣∣ s

〈
Ēb

∣∣∣V †0 ∣∣∣ Ēa〉
s

∣∣∣2︸ ︷︷ ︸
Absorption of ω−quanta

. (5.0.66)
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Rant I consider this derivation to be rather sloppy. Why should one expect first order PT
to remain valid over an infinite time period? The original calculation for |M|2 is a probability
– why are we allowed to re-interpret its infinite time limit as a transition rate (i.e., number of
transitions per unit time)? Unfortunately, most textbooks do not justify Fermi’s Golden Rule
very well; my lack of rigor may only be justified – rather unscientifically! – by blaming others:
everyone else does (roughly) the same thing!
Relation to Weinberg’s Discussion [2] Weinberg’s §6 stayed within the Schrödinger picture.

|ψ(t)〉s =
∑
n

∣∣Ēn〉s s

〈
Ēn
∣∣ψ(t)

〉
s

(5.0.67)

=
∑
n

∣∣Ēn〉s I

〈
Ēn; t

∣∣ψ(t)
〉

I
. (5.0.68)

Referring to equations (5.0.24) and (5.0.25), we see that

|ψ(t)〉s =
∑
n

e−iĒn(t−t0)
∣∣Ēn〉s s

〈
Ēn |UI(t, t0)|ψ(t0)

〉
. (5.0.69)

Comparison with Weinberg’s eq. (6.1.4) reveals the identifications

Ēn ↔ En(Weinberg) (5.0.70)

eiĒat0
∣∣Ēa〉s

↔ Ψn(Weinberg) (5.0.71)

s

〈
Ēn |UI(t, t0)|ψ(t0)

〉
↔ cn(Weinberg). (5.0.72)

Problem 5.1. Show that this identification is consistent with Weinberg’s equation (6.1.5); i.e.,
show that s

〈
Ēn |UI(t, t0)|ψ(t0)

〉
obeys the same differential equation as Weinberg’s cn(t). Hint:

Remember that UI obeys the Schrödinger equation with respect to the perturbation H ′I, but in
the interaction picture.

Classical Electromagnetic Fields: Plane Waves Let us now consider the electro-
magnetic Hamiltonian, neglecting the quadratic-in- ~A term:

H =
(~p− e ~A)2

2m
+ eφ(~x) (5.0.73)

≈ ~p2 − e(~p · ~A+ ~A · ~p)
2m

+ eφ(~x). (5.0.74)

For an electromagnetic plane wave,

~A = 2 ~A0 cos
(
~k · ~x− kt

)
, (5.0.75)

= ~A0

(
ei
~k·~x−ikt + e−i

~k·~x+ikt
)
, (5.0.76)

~A0 · ~k = 0, k ≡ |~k|. (5.0.77)

The ~A0 is the polarization vector; whereas ~k/k is the propagation direction and k the angular
frequency.
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It is possible to show, whenever ~∇ · ~A = 0, we have ~p · ~A = ~A · ~p. For our case

~∇ · ~A = −2 ~A0 · ~∇(~k · ~x) sin
(
~k · ~x− kt

)
(5.0.78)

= −2( ~A0 · ~k) sin
(
~k · ~x− kt

)
= 0. (5.0.79)

Therefore, we have

H = H0 +H ′ (5.0.80)

H0 =
~p2

2m
− Ze2

r
(5.0.81)

H ′ = − e

m
~A · ~p (5.0.82)

= −V e−ikt − V †e+ikt (5.0.83)

V ≡ e

m
( ~A0 · ~p)ei

~k·~x. (5.0.84)

We may compute〈
Ēb |V0| Ēa

〉
=

e

m

〈
Ēb

∣∣∣( ~A0 · ~p)ei
~k· ~X
∣∣∣ Ēa〉 (5.0.85)

=
e

m
~A0(~k) ·

∫
d3~x′

(
−i~∇~x 〈~x| Ēb

〉)†
〈~x| Ēa

〉
ei
~k·~x (5.0.86)

=
ie

m
~A0(~k) ·

∫
d3~x′

(
~∇~x 〈~x| Ēb

〉)†
〈~x| Ēa

〉
ei
~k·~x. (5.0.87)

The absorptive cross section σ is defined as the ratio of the rate of energy absorbed by the atom
to the energy flux of the electromagnetic field. Now, the energy flux is ( ~E × ~B) · k̂.

~E = −∂t ~A = −2k ~A0 sin
(
~k · ~x− kt

)
(5.0.88)

~B = ~∇× ~A = 2( ~A0 × ~k) sin
(
~k · ~x− kt

)
(5.0.89)

~E × ~B = −2k ~A0 ×
(

2 ~A0 × ~k
)

sin2
(
~k · ~x− kt

)
(5.0.90)

= 4k2| ~A0|2k̂ sin2
(
~k · ~x− kt

)
. (5.0.91)

Therefore

σ =
π

k| ~A0|2
e2

m2

∣∣∣〈Ēa ∣∣∣( ~A0 · ~p)ei
~k· ~X
∣∣∣ Ēb〉∣∣∣2 δ (Ēa − Ēb + k

)
. (5.0.92)

Dipole Approximation When the wavelength ∼ 2π/k of the electromagnetic field is much
longer than the size of the atom,

k ∼ Ze2

a0/Z
∼ Ze2

LA
, (5.0.93)
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where LA is the size of the atom; then the exponential may be replaced with unity to leading
order. 〈

Ēa

∣∣∣( ~A0 · ~p)ei
~k· ~X
∣∣∣ Ēb〉 ≈ 〈Ēa ∣∣∣ ~A0 · ~p

∣∣∣ Ēb〉 . (5.0.94)

As Sakurai [3] explains, we may see that

2m[X i, H0] = [X i, Pj]Pj + Pj[X
i, Pj] (5.0.95)

= 2iPi. (5.0.96)

Therefore 〈
Ēa |V0| Ēb

〉
≈ m

i
~A0 ·

〈
Ēa

∣∣∣[ ~X,H0]
∣∣∣ Ēb〉 (5.0.97)

≈ m

i
(Ēb − Ēa) ~A0 ·

〈
Ēa

∣∣∣ ~X∣∣∣ Ēb〉 . (5.0.98)

σ =
π · e2

k| ~A0|2
(Ēb − Ēa)2

∣∣∣ ~A0 ·
〈
Ēa

∣∣∣ ~X∣∣∣ Ēb〉∣∣∣2 δ (Ēa − Ēb + k
)
. (5.0.99)

Photoelectric effect As a toy model of the photoelectric effect, let us compute the am-
plitude of the electron at ground state of the H atom to be freed from atom itself. That is,

〈~x| Ēa
〉

= exp (−r/aB) /
√
πa3

B (5.0.100)

〈~x| Ēb
〉

= exp (i~q · ~x) . (5.0.101)

The 〈~x| Ēb
〉

is an approximate description of the free state of the H atom, with outgoing mo-
mentum ~q. In this limit, the kinetic energy dominates over the potential, so〈

~x |H| Ēb
〉
≈ ~q2

2me

. (5.0.102)

The amplitude now reads〈
~Eb |V0| ~Ea

〉
=

e

me

( ~A0(~k) · ~q)
∫
R3

d3~x
exp (−r/aB)√

πa3
B

ei(
~k−~q)·~x. (5.0.103)

Put ~k − ~q = |~k − ~q|ẑ.〈
~Eb |V0| ~Ea

〉
=

e

me

( ~A0(~k) · ~q)(2π)

∫ ∞
0

dr · rexp (−r/aB)√
πa3

B

ei|
~k−~q|r − e−i|~k−~q|r

i|~k − ~q|
(5.0.104)

=
4(2π)e

me

( ~A0(~k) · ~q)
√
a3
B

π

1

(1 + a2
B(~k − ~q)2)2

(5.0.105)

Therefore, the total rate of transition is given by

dN

dt
=

∫
R3

d3~q

(2π)3
(64π)

e2

m2
e

( ~A0(~k) · ~q)2 a3
B

(1 + a2
B(~k − ~q)2)2

(2π)δ

(
Ēa −

q2

2me

+ k

)
(5.0.106)

Ēa = −13.6 eV. (5.0.107)
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Because we are assuming that k � |Ēa|, we have q2/(2me) ≈ k.

dN

dtd2Ωq̂

≈
∫ ∞

0

dqq2

(2π)3
(64π)

e2

m2
e

( ~A0(~k) · ~q)2 a3
B

(1 + a2
B(~k − ~q)2)2

(2π)δ

(
q2

2me

− k
)

(5.0.108)

=

∫ ∞
0

(dq2)
√
q2

2(2π)3
(128π)

e2

me

( ~A0(~k) · ~q)2 a3
B

(1 + a2
B(~k − ~q)2)2

(2π)δ
(
q2 − 2mek

)
(5.0.109)

=
(2mek)

3
2

4π
(64)

e2

me

( ~A0(~k) · q̂)2 a3
B

(1 + a2
B(~k − ~q)2)2

∣∣∣∣∣
~q2=2mek

. (5.0.110)

Problem 5.2. Transition Rates of Driven SHO Consider the 3D quantum simple
harmonic oscillator (SHO) ~X coupled to an external classical harmonic oscillator ~q.

H =
~p2

2m
+

1

2
mω2 ~X2 + ε ~X · ~q, (5.0.111)

~q(t) = ~q0 cos(Ωt); (5.0.112)

Compute, at leading order in ε, the rate of transition Γ from ground state to the 1st excited
state of the SHO.
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6 Poisson Brackets, Commutation Relations, & Momen-

tum as the Generator of Translations

Consider an infinite D−dimensional flat space. In the Hilbert space spanned by the eigenkets
{|~x〉} of the position operator ~X, the translation operator is unitary and may be written as

T (~d) =

∫
RD

dD~x
∣∣∣~x+ ~d

〉
〈~x| (6.0.1)

= exp
(
−i~d · ~P

)
. (6.0.2)

Because T is unitary, the ‘momentum’ ~P is Hermitian. Strictly speaking, ~P is of dimensions
1/[Length] – i.e., it is not really momentum. To produce an operator that is in fact of dimension
[momentum] = [angular momentum]/[length], we need to multiply a dimensionful quantity κ to
~P such that

[κ][~P ] = [momentum]. (6.0.3)

Because [~P ] = 1/[Length], we must have

[κ] = [angular momentum]. (6.0.4)

In Quantum Mechanics, this constant is nothing but ~:

~~P ≡ momentum. (6.0.5)

Why we would choose to do something like that, has to do with the analogy between the Poisson
brackets of classical mechanics and the commutator of quantum mechanics.
Poisson bracket From §(A), we see that the generator of spatial translation in classical
mechanics is the momentum pi, in that

{f (~q, ~p) , pi}PB =
∂f

∂qi
. (6.0.6)

The generator of time translation is the Hamilton H, in that

{f (~q(t), ~p(t)) , H}PB =
d

dt
f (~q(t), ~p(t)) . (6.0.7)

Quantum Dynamics In the Heisenberg picture, and assuming the Hamiltonian H is time-
independent, an operator OH obeys the first order in time ODE:

ȮH =
1

i~
[OH, H] . (6.0.8)

Linear algebra {|~x〉} If we assume that, for an arbitrary ket |ψ〉,

〈~x| f
(
~X, ~P

)
|ψ〉 = f

(
~x,−i~∇

)
〈~x|ψ〉 . (6.0.9)
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This amounts to assuming a certain operator ordering. For example, this would pan out if all
the position operators stand to the left and the momentum to the right; for e.g.,〈

~x
∣∣∣ ~X2 ~P 2

∣∣∣ψ〉 = ~x2(−i)2∂i∂i 〈~x|ψ〉 . (6.0.10)

Let us now consider〈
~x
∣∣∣[f ( ~X, ~P) , Pj]∣∣∣ψ〉 = f

(
~x,−i~∇

)
〈~x |Pj|ψ〉 − (−)i~∇

〈
~x
∣∣∣f ( ~X, ~P)∣∣∣ψ〉 (6.0.11)

= −if
(
~x,−i~∇

)
∂j 〈~x|ψ〉+ i~∇

(
f
(
~X, ~P

)
〈~x|ψ〉

)
(6.0.12)

= i
(
~∇f
(
~X, ~P

))
〈~x|ψ〉 . (6.0.13)

In other words, since |ψ〉 was arbitrary,

∂f
(
~X, ~P

)
∂Xj

=
1

i

[
f
(
~X, ~P

)
, Pj

]
. (6.0.14)

Notice there is a ~ in eq. (6.0.8) (I’ve deliberately restored it); but none in eq. (6.0.14).
Comparison Identifying eq. (6.0.7) with eq. (6.0.8) (as well as f ↔ OH); and eq.

(6.0.6) with eq. (6.0.14) – we now see the following classical-quantum correspondence.

• The Poisson bracket {·, ·}PB in classical mechanics should be identified with the commu-
tator (i~)−1[·, ·] of quantum mechanics.

• The Hamiltonian in classical mechanics should be identified with the Hamiltonian in quan-
tum mechanics.

• The momentum in classical mechanics ~P should be identified with the −i~~∇ in quantum
mechanics (within the position representation).
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7 Non-Relativistic Quantum Mechanics: Schrödinger ’s

equation & Probability Current, Electromagnetism

Total Energy From the previous section, we see that the momentum operator in QM is
to be identified with the generator of translations in the following manner:

〈~x| ~P |ψ〉 = −i~~∇ 〈~x|ψ〉 . (7.0.1)

That, in turn, means that the square of the momentum is the (negative) Laplacian:

〈~x| ~P 2 |ψ〉 = −~2~∇2 〈~x|ψ〉 . (7.0.2)

Within the Hamiltonian formalism, the classical Hamiltonian H itself is usually kinetic plus
potential energy V (i.e., total energy). In the previous section, we have also identified the QM

Hamilton with the classical one. Since kinetic energy is ~P 2/(2m), we may therefore identify, in
non-relativistic QM:

〈~x|H |ψ〉 = 〈~x|

(
~P 2

2m
+ V ( ~X)

)
|ψ〉 (7.0.3)

=

(
− ~2

2m
~∇2 + V (~x)

)
〈~x|ψ〉 . (7.0.4)

Schrödinger ’s equation (3.0.3) now takes the form:

i∂tψ(t, ~x) =

(
− 1

2m
~∇2 + V (~x)

)
ψ(t, ~x), (7.0.5)

where ψ(t, ~x) ≡ 〈~x|ψ(t)〉 and ~ ≡ 1.
Probability Current in NR QM In non-relativistic QM,

ρ ≡ |ψ(~x)|2 (7.0.6)

is the probability density of finding the particle at ~x. The associated (spatial) probability current
is

~J =
i

2m

{
ψ~∇ψ∗ − ψ∗~∇ψ

}
. (7.0.7)

Altogether, they obey the conservation equation

∂ρ

∂t
= −~∇ · ~J. (7.0.8)

This is perhaps best understood by integrating over some finite spatial volume D; applying
Gauss’ theorem on the right hand side,

d

dt

∫
D

ρ(t, ~x)dD~x = −
∫
∂D

~J(t, ~x) · dD−1~Σ. (7.0.9)
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(The dD−1~Σ is the directed area element on the boundary of D, which I denote as ∂D.) The
interpretation is, the rate of change of probability within D per unit time is accounted for by
the flux of the probability current through the boundary.

Let us turn to verifying eq. (7.0.8) using Schrödinger ’s equation (7.0.5).

ρ̇ = (iψ̇)∗(iψ) + (iψ)∗(iψ̇) (7.0.10)

=
(
−(2m)−1~∇2 + V

)
ψ∗ · (iψ)− iψ∗

(
−(2m)−1~∇2 + V

)
ψ (7.0.11)

= i(2m)−1
(
ψ∗~∇2ψ − ψ~∇2ψ∗

)
. (7.0.12)

On the other hand,

~∇ · ~J = i(2m)−1~∇ ·
(
ψ~∇ψ∗ − ψ∗~∇ψ

)
(7.0.13)

= i(2m)−1
(
ψ~∇2ψ∗ − ψ∗~∇2ψ

)
= −ρ̇. (7.0.14)

Electromagnetism We turn now to the problem of including electromagnetism. As shown
in appendix (A), the non-relativistic Hamiltonian describing a charged point particle is

H =
1

2m

(
~p− e ~A

)2

+ eφ. (7.0.15)

The Schrödinger equation in the position representation thus reads

i∂tψ =

{
− 1

2m

(
∂i − ieAi

) (
∂i − ieAi

)
+ eφ+ V

}
ψ. (7.0.16)

Probability Current & Electromagnetism With the inclusion of electromagnetism, we
need to modify the probability current in order for it to remain conserved. The spatial current
is

J i =
i

2m
(ψ(Diψ)∗ − ψ∗Diψ) . (7.0.17)

Let’s compute its divergence:

∂iJ
i =

i

2m

(
∂iψ(∂i + ieAi)ψ∗ − ∂iψ∗(∂i − ieAi)ψ

)
+

i

2m
(ψ∂i(Diψ)∗ − ψ∗∂iDiψ) (7.0.18)

=
i

2m

(
∂iψ(ieAi)ψ∗ + ∂iψ

∗(ieAi)ψ
)

+
i

2m
(ψ∂i(Diψ)∗ − ψ∗∂iDiψ) . (7.0.19)

On the other hand, we may re-write eq. (7.0.16) as

ψ̇ = −i
{
− 1

2m

(
∂i − ieAi

) (
∂i − ieAi

)
+ eφ+ V

}
ψ (7.0.20)

=
1

2m
(i∂iDi + eAi(∂i − ieAi))ψ − i(eφ+ V )ψ. (7.0.21)

Multiplying both sides by ψ∗,

ψ∗ψ̇ =
1

2m
(ψ∗i∂iDiψ − ieψ∗Aii∂iψ)− i e

2

2m
~A2|ψ|2 − i(eφ+ V )|ψ|2. (7.0.22)
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Adding this to its complex conjugate,

∂t|ψ|2 = ψ∗ψ̇ + ψψ̇∗ (7.0.23)

=
i

2m
(ψ∗∂iDiψ − ψ∂i(Diψ)∗ − ψ∗(ieAi)∂iψ − ψ(ieAi)∂iψ

∗). (7.0.24)

We have thus proven that the time derivative of the probability density |ψ|2 is the negative
divergence of the current:

∂t|ψ|2 = −∂iJ i. (7.0.25)

U1 Gauge Invariance Let us observe that, if we define the following covariant derivatives

Dt ≡ ∂t + ieφ, (7.0.26)

Di ≡ ∂i − ieAi; (7.0.27)

then we may re-write Schrödinger’s equation in (7.0.16) into the following form

iDtψ =

(
− 1

2m
DiDi + V

)
ψ. (7.0.28)

We shall see that eq. (7.0.28) will remain unchanged if we perform the following simultaneous
replacements:

ψ → exp(iθ(t, ~x))ψ, φ→ φ− e−1∂tθ Ai → Ai + e−1∂iθ. (7.0.29)

Let’s compute

Dt(e
iθ·) = eiθ(iθ̇ + ∂t + ieφ) (7.0.30)

= eiθ(∂t + i(eφ+ θ)). (7.0.31)

Likewise,

Di(e
iθ·) = eiθ(i∂iθ + ∂i − ieAi) (7.0.32)

= eiθ(∂i − ie(Ai − ∂iθ)). (7.0.33)

These results tell us, if we apply the replacement rules of eq. (7.0.29), eq. (7.0.28) will transform
into

eiθiDtψ = eiθ
(
− 1

2m
DiDi + V

)
ψ. (7.0.34)

We witness that, this invariance is primarily due to the following fact:

Under the local (i.e., space-time dependent) U1 replacement rules of eq. (7.0.29),
the derivatives in equations (7.0.26) and (7.0.27) – when acting upon the wavefunc-
tion – transform covariantly, namely

Dtψ → eiθDtψ, (7.0.35)

Diψ → eiθDiψ. (7.0.36)
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Problem 7.1. Lagrangian Formulation Show that the following Lagrangian density

L ≡ i

2
(ψ∗Dtψ − ψ(Dtψ)∗)− 1

2m
(Diψ)∗(Diψ)− V |ψ|2 (7.0.37)

would yield the Schrödinger’s equation in eq. (7.0.28). That is, apply the Euler-Lagrange
equations either with respect to ψ∗,

∂t
∂L
∂∂tψ∗

+ ∂i
∂L
∂∂iψ∗

=
∂L
∂ψ∗

; (7.0.38)

or to ψ,

∂t
∂L
∂∂tψ

+ ∂i
∂L
∂∂iψ

=
∂L
∂ψ

; (7.0.39)

and show that eq. (7.0.28) is recovered.
Explain why the Lagrangian in eq. (7.0.37) is in fact invariant under the replacements in eq.

(7.0.29).
Suppose we consider global U1 transformations, where the θ in eq. (7.0.29) no longer depends

on the space-time position (t, ~x). Since L is invariant, if θ � 1 so that ψ → eiθψ ≈ ψ+ iθψ and
ψ∗ → ψ∗ − iθψ∗ + . . . , we must have

L

→ L+

(
∂L
∂∂tψ

iθψ̇ +
∂L
∂∂iψ

iθ∂iψ +
∂L
∂ψ

iθψ + c.c.

)
+O(θ2) (7.0.40)

= L+

{
iθ

{
∂t

(
∂L
∂∂tψ

ψ

)
+ ∂i

(
∂L
∂∂iψ

ψ

)
+ ψ

(
∂L
∂ψ
− ∂t

∂L
∂∂tψ

− ∂i
∂L
∂∂iψ

)}
+ c.c.

}
+ · · · = L

where ‘c.c.’ denotes the complex conjugate of the preceding terms in the brackets. Explain why,
when eq. (7.0.28) holds, we must have

∂tJ 0 = −∂iJ i, (7.0.41)

where

J 0 ≡ i
∂L
∂∂tψ

ψ + c.c., (7.0.42)

J i ≡ i
∂L
∂∂iψ

ψ + c.c.. (7.0.43)

Compute (J 0,J i) from eq. (7.0.37) and compare them with |ψ|2 and J i in eq. (7.0.17).
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8 Hydrogen-like Atoms

8.1 Separation of Variable Solution: Energy Eigen-functions & -
Energies

The stationary-state Schrödinger equation describing an electron’s wavefunction ψ around a
Hydrogen-like atom is, in spherical coordinates (r, θ, φ),

〈~x |H|ψ〉 = E 〈~x|ψ〉 , (8.1.1)

− 1

2me

~∇2ψ − Ze2

r
ψ = − 1

2me

(
1

r2
∂r
(
r2∂rψ

)
+

1

r2
~∇S2ψ

)
− Ze2

r
ψ = −Eψ. (8.1.2)

The first term on the left is the non-relativistic kinetic energy p2/(2me), where me is the electron
mass. The −Ze2/r is the electric/Coulomb potential experienced by the electron orbiting around
a central nucleus with Z protons and e is the fundamental electric charge; and r the radius of
the orbit. Moreover, we are going to be interested in bound states for now; so −E < 0.

We first perform a separation of variables,

ψ(r, θ, φ) = R(r)Y m
` (θ, φ). (8.1.3)

Using the fact that Y m
` is the eigenfunction of the Laplacian on the unit sphere, with eigenvalue

−`(`+ 1),

~∇S2Y
m
` = −`(`+ 1)Y m

` , (8.1.4)

we have

−R
′′(r)

2me

− R′(r)

mer
+

(
E +

`(`+ 1)

2mer2
− Z · e2

r

)
R(r) = 0. (8.1.5)

Next, we re-scale

ρ ≡
√

2meEr, ξ ≡
√

2me

E
e2Z; (8.1.6)

to obtain

−R′′(ρ)− 2

ρ
R′(ρ) +

(
1− ξ

ρ
+
`(`+ 1)

ρ2

)
R(ρ) = 0. (8.1.7)

Next, we apply the ansatz

R(ρ) = ρ` exp(−ρ)F (ρ) (8.1.8)

to convert the above ODE into

F ′′(ρ) + 2

(
`+ 1

ρ
− 1

)
F ′(ρ) +

ξ − 2`− 2

ρ
F (ρ) = 0. (8.1.9)
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Let’s solve it via a power series

F (ρ) =
+∞∑
s=0

asρ
s. (8.1.10)

One would find that

+∞∑
s=0

(
(s− 1)sasρ

s−2 + asρ
s−1(ξ − 2`− 2)− 2sasρ

s−1 + 2sasρ
s−2(`+ 1)

)
= 0. (8.1.11)

The only s = 0 term is

s = 0 : a0(ξ − 2`− 2)ρ−1. (8.1.12)

By replacing s→ s+1 in the ρs−2 terms, we see that, for s ≥ 1, requiring that each independent
power of ρ to vanish implies

(2(1 + s+ `)− ξ)as = (1 + s)(s+ 2`+ 2)as+1. (8.1.13)

Following Weinberg [2] we make the following asymptotic argument. For large s, notice

as+1 =
2(1 + s+ `)− ξ

(1 + s)(s+ 2`+ 2)
as →

2

s
as. (8.1.14)

As Weinberg argues, since as+1 and as have the same sign for large s, the infinite series is
dominated by these large s terms as ρ→∞. Therefore we may approximate

as ≈
2

s
as−1 ≈

22

s(s− 1)
as−2 ≈

2s

s!
a0. (8.1.15)

Of course, once s is small enough, as+1/as is no longer 2/s; Weinberg asserts that one should
instead write

as ≈
2s

(s+B)!
C, (8.1.16)

for constants B and C.7 As a result, inserting this asymptotic series into equations (8.1.8) and
(8.1.10), and assuming B is integer,

R(ρ) = ρ`e−ρ
∞∑
s=0

asρ
s ≈ Cρ`

e−ρ

(2ρ)B

∞∑
s=0

(2ρ)s+B

(s+B)!
= C ′ρ`−Be−ρe2ρ ∝ ρ`−Be+ρ; (8.1.17)

which blows up exponentially quickly at infinity. Since such a wave function cannot be normalized
to unity, we therefore require that the series terminate at some s = s?. If an+1 = 0, the recursion
relation in eq. (8.1.13) tells us

ξ =

√
2me

E
e2Z = 2(s? + `+ 1) ≡ 2n, n ≥ `+ 1. (8.1.18)

7Weinberg does not appear to explain this step very explicitly.
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This in turn means F (ρ) is a s? = n− (`+ 1) degree polynomial. They are known as generalized
Laguerre polynomials F (ρ) = L2`+1

n−(`+1)(2ρ). The first few polynomials are

n = 1, ` = 0 : L2`+1
n−(`+1)(2ρ) = 1 (8.1.19)

n = 2, ` = 0 : L2`+1
n−(`+1)(2ρ) = 2− 2ρ (8.1.20)

n = 2, ` = 1 : L2`+1
n−(`+1)(2ρ) = 1 (8.1.21)

n = 3, ` = 0 : L2`+1
n−(`+1)(2ρ) = 3− 6ρ+ 2ρ2 (8.1.22)

n = 3, ` = 1 : L2`+1
n−(`+1)(2ρ) = 4− 2ρ (8.1.23)

n = 3, ` = 2 : L2`+1
n−(`+1)(2ρ) = 1 (8.1.24)

(See here for more information about orthogonal polynomials; in particular, explicit expressions
for the generalized Laguerre and its relation to 1F1 can be found here.) To sum, the wave
function is

〈~x|n, `,m〉 ≡ ψn,`,m(r, θ, φ) (8.1.25)

= χn,`,m

(
r

n · aB

)`
exp

(
− r

n · aB

)
L2`+1
n−(`+1)

(
2r

n · aB

)
Y m
` (θ, φ); (8.1.26)

with χn,`,m chosen so that the |ψ|2 integrates to unity; the energy levels given by

−En = −e
4Z2

2n2
me ≡ −

1

2me(n · aB)2
≈ −(13.6 eV)

Z2

n2
, n = 1, 2, 3, · · · ≥ `+ 1; (8.1.27)

and the Bohr radius is defined as

aB ≡ (mee
2Z)−1 ≈ 0.5292× 10−8Z−1cm. (8.1.28)

For each `, there are 2`+ 1 m states; so altogether, because n ≥ `+ 1, there is a

n−1∑
`=0

(2`+ 1) = 2n
n− 1

2
+ n =

2n(n− 1) + 2n

2
= n2 (8.1.29)

fold degeneracy for each nth energy state. Some nomenclature: ` = 0, 1, 2, 3 are denoted respec-
tively as s,p,d,f . The (n, `) pair is often stated as 2p ≡ (2, 1), 1s ≡ (1, 0), etc.

Problem 8.1. Compute the normalization constants χn,`,m in eq. (8.1.26) for n = 1, 2 and
` ≤ n− 1.

Problem 8.2. Confluent Hypergeometric Function The radial ODE in eq. (8.1.9)
corresponds to the one for the confluent hypergeometric function – see here, for instance. Write
down the two linearly independent solutions and describe the relevant properties that leads one
to conclude F (ρ) = L2`+1

n−(`+1)(2ρ) for the Hydrogen-like atom.
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8.2 Electric Dipole transitions

The electric dipole transition drives the dominant radiation from an atomic system. The tran-
sition rate is [2]

Γ(α→ β) = 4(Ea − Eb)3
∣∣∣〈`,m;α

∣∣∣ ~D∣∣∣ `′,m′; β〉∣∣∣2 , (8.2.1)

where the dipole operator itself is

~D =
∑
n

en ~Xn. (8.2.2)

This dipole approximation holds whenever the emitted photon’s wavelength is much larger than
the size of the atomic system.

8.3 Hydrogen Energies: SO4 symmetry and the Runge-Lenz Vector

Rotations in 4D In 4D there are (42−4)/2 = 6 independent rotation generators. To avoid
confusion, we will now use capital letters to denote an index that runs between 1 and 3. The
Lie Algebra for SO4 is defined in terms of the 3D ones

J I =
1

2
εIJKJJK ⇔ εIJKJ I = JJK. (8.3.1)

plus the remaining 3 generators {J I4}. We have[
JA, JB

]
= iεABCJC (8.3.2)[

JA4, JB4
]

= iεABCJC (8.3.3)[
JA4, JB

]
= iεABCJC4. (8.3.4)

Furthermore, if we define

M I
± ≡

J I ± J I4

2
. (8.3.5)

we may re-write the SO4 Lie Algebra in terms of 2 independent copies of the SO3 ones.[
M I

+,M
J
−
]

= 0 and
[
M I
±,M

J
±
]

= iεIJKMK
± . (8.3.6)

Hence, the eigenstates of the rotation generators in 4D space may be labeled by two independent
pairs of numbers (`±,m±); with `± non-negative integer/half-integer,

~M2
±

∣∣∣`+,m+
`−,m−

〉
= `±(`± + 1)

∣∣∣`+,m+
`−,m−

〉
, ~M2

± ≡M I
±M

I
± (8.3.7)

M3
±

∣∣∣`+,m+
`−,m−

〉
= m±

∣∣∣`+,m+
`−,m−

〉
and the usual azimuthal numbers m± ∈ {−`±,−`± + 1, . . . , `± − 1, `±}.
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Laplace-Runge-Lenz Vector: Classical In 3D, the Laplace-Runge-Lenz vector is
the conserved quantity – in addition to energy and angular momentum – within non-relativistic
systems with a 1/r potential. More specifically, suppose our Hamiltonian is

H =
~P 2

2m
− Ze2

r
. (8.3.8)

Then the equations of motion are

m~̈x = ~̇p = −~∇
(
−Ze

2

r

)
= −Ze

2

r2
r̂. (8.3.9)

Mass times the Laplce-Runge-Lenz vector itself is defined in terms of the momentum ~p and
angular momentum ~L as

~A ≡ 1

2m

(
~p× ~L− ~L× ~p

)
− Ze2

r
~x. (8.3.10)

(We have written the ~p× ~L terms in this symmetrized manner so that it becomes a Hermitian

operator upon quantization.) Let us check it is in fact constant; remember ~̇L = 0.

~̇A =
1

2m

(
~̇p× ~L− ~L× ~̇p

)
+
Ze2

r2
ṙ~x− Ze2

r
~̇x (8.3.11)

= −Ze
2

r2
r̂ × (~x× ~̇x) +

Ze2

r2
ṙ~x− Ze2

r
~̇x (8.3.12)

= −Ze
2

r2

(
(r̂ · ~̇x)~x− (r̂ · ~x)~̇x

)
+
Ze2

r2
ṙ~x− Ze2

r
~̇x (8.3.13)

We have used ~a×(~b×~c) = (~a ·~c)~b−(~a ·~b)~c. Now, ~̇x = ∂t(r~r) = ṙ~x+r ˙̂r. But r̂ · ˙̂r = (1/2)∂t(r̂ · r̂) =
(1/2)∂t(1) = 0.

~̇A = −Ze
2

r2
ṙ~x+

Ze2

r
~̇x+

Ze2

r2
ṙ~x− Ze2

r
~̇x = 0 (8.3.14)

Now that we see ~A is constant, let us understand where it is pointing. For that, we only need
to evaluate it at a convenient location, since it is constant. Suppose we do so along the orbit
where it intersects the semi major axis. Then, if we place the orbit on the xy plane such that the
former is moving in a counter-clockwise manner and the semi-major axis is along the x̂ direction,

~p× ~L = m~̇x×m(~x× ~̇x) (8.3.15)

= m|~̇x|(±ŷ)×m(∓rx̂× (±)|~̇x|ŷ) (8.3.16)

= ±m|~̇x|ŷ ×
(
−mr|~̇x|ẑ

)
= ∓m2r|~̇x|2x̂. (8.3.17)

(The upper sign is when the orbit intersects the positive x−axis; and the lower sign when it

intersects the negative x−axis.) But the magnitude of the angular momentum |~L| = mr|~̇x| ≡ `
is a constant.

~p× ~L = ∓`
2

r
x̂. (8.3.18)
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YZ: Incomplete!
Laplace-Runge-Lenz Vector: Quantum We now promote both to Hamiltonian and

the Laplace-Runge-Lenz vector to operators. Note that{
(~p× ~L)i

}†
= εijk

(
pjL

k
)†

(8.3.19)

= εijkLkpj = (~L× ~p)i. (8.3.20)

Likewise {
(~L× ~p)i

}†
= (~p× ~L)i. (8.3.21)

Hence ~A is Hermitian. Now, because H is rotation-invariant, it commutes with ~J .[
Li, H

]
= 0. (8.3.22)

Problem 8.3. Demonstrate that ~A commutes with the Hamiltonian H.

[Ai, H] = 0. (8.3.23)

Bound State Energies We will now see why equations (8.3.23) and (8.3.22) yields a
SO4 symmetry enjoyed by the bound states (E < 0) of hydrogen-like atoms. Define

N i ≡
√
− m

2E
Ai. (8.3.24)

Problem 8.4. Show that

LiN i = 0 = N iLi and ~N2 = −H
E

(
~L2 + 1

)
− Z2e4m

2E
. (8.3.25)

From the second equality: if ~N2 may be diagonalized, H will then be diagonalized as well.

If we further define

Ki
± ≡

Li ±N i

2
, (8.3.26)

then a direct calculation will show that these Ki
± obey[

Ka
±, K

b
±
]

= iεabcKc
± and

[
Ka

+, K
b
−
]

= 0. (8.3.27)

Comparing these equations to eq. (8.3.6) and recalling equations (8.3.23) and (8.3.22), we learn
that these Ki

± not only generate rotations in a 4D space, they may be used to generate eigenstates
of the Hamiltonian.8 [

Ki
±, H

]
= 0 (8.3.28)

8It is important to note, these ~Ks are Hermitian because both J i and N i are. The N i are Hermitian because
the energies are negative – remember the square root factor of re-scaling we performed in eq. (8.3.24).
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That is, H is invariant under 4D ‘rotations’.
Symmetry implies degeneracy By employing the spherical tensor components of N i and

the Wigner-Eckart theorem, we may see why the energy eignstates are degenerate with respect
to the angular momentum `. (This approach can apparently be found in Shankar’s QM text.)
In particular, if

~L2 |E; `,m〉 = `(`+ 1) |E; `, `〉 (8.3.29)

H |E; `,m〉 = E |E; `, `〉 ; (8.3.30)

we know from eq. (8.3.23) that

H
(
Nm′

`′ |E; `,m〉
)

= Nm′

`′ H |E; `,m〉 (8.3.31)

= E
(
Nm′

`′ |E; `,m〉
)
. (8.3.32)

But by the Wigner-Eckart theorem, we know that N±1
1 |E; `, `〉 transforms under rotations like

the total angular momentum state |`+ 1, `+ 1; 1 `〉.

〈E; `,m|N±1
1 |E; `, `〉 = 0 (8.3.33)

In other words, we may start from an eigenstate of ~L2 with eigenvalue ` and get to the ` + 1
eigenstate while still remaining within the same energy subspace.

Energy eigenvalues Now, let us observe that

~K2
± =

1

4

(
~L2 + ~N2 ± ~L · ~N ± ~N · ~L

)
. (8.3.34)

Eq. (8.3.25) now informs us that

~K2
+ = ~K2

− ≡ ~K2 =
1

4

(
~L2 + ~N2

)
. (8.3.35)

This in turn tells us, for the system at hand, the eigensystem in eq. (8.3.7) is constrained to
obey `+ = `−. Next, let us also compute

~K2
+ + ~K2

− = 2 ~K2 =
~L2 + ~N2

2
(8.3.36)

~N2 = 4 ~K2 − ~L2 (8.3.37)

We may now utilize this result in eq. (8.3.25).

4 ~K2 −
(

1− H

E

)
~L2 +

H

E
= −Z

2e4m

2E
. (8.3.38)

Let us act both sides on an eigenstate of energy E; namely |E, `K〉. But first: we have –
remember equations (8.3.35) and (8.3.7) –

H |E, `K〉 = E |E, `K〉 (8.3.39)

~K2 |E, `K〉 = `K(`K + 1) |E, `K〉 ; (8.3.40)
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and therefore we have arrived at

−Z
2e4m

2E
|E, `K〉 = 4

(
`K(`K + 1) +

1

4

)
|E, `K〉 (8.3.41)

= (2`K + 1)2 |E, `K〉 ; (8.3.42)

E = −Z
2e4m

2n2
, n ≡ 2`K + 1. (8.3.43)

Notice the angular momentum operator has canceled out; and the energy levels only depend on
the eigenvalues of ~K2. This is what accounts for the high degree of degeneracy in the hydrogen
energy levels – it neither depends on the azimuthal angular momentum number m (which may
be attributed to rotation symmetry), nor on the orbital angular momentum ` itself. Also recall,
`K can take integer and half-integer values; therefore n = 1, 2, 3, . . . .

9 3D Rotation Symmetry in Quantum Systems

We define quantum dynamics to be rotationally symmetric whenever the Hamilton is a scalar
operator under rotations:

D(R̂)†HD(R̂) = H. (9.0.1)

Here, D(R̂) is the rotation operator. The equivalent but infinitesimal version is[
H, J i

]
= 0; (9.0.2)

where ~J is the total rotation generator.
In particular, if H involves two or more distinct sets of vector operators – say, orbital angular

momentum {Li} and spin operators {Si} of a single particle – then the total rotation operator

must include generators acting on all relevant spaces. For example, if H involves ~L and ~S, then
the total rotation generator is

~J = ~L+ ~S. (9.0.3)

The rotation operator itself, parametrized by the rotation angles {θa}, is

D(R̂(~θ)) = exp (−iθaJa) = exp (−iθa {La + Sa}) . (9.0.4)

If the Hamilton is a scalar operator it must itself be comprised of scalar operators

H = H
(
~L2, ~S2, ~L · ~S

)
. (9.0.5)

For example, we may have the following spherically symmetric Hamiltonian:

H =
~P 2

2m
+ α~L · ~S + V (| ~X|); (9.0.6)
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which transforms as

D(R̂)†HD(R̂) =

(
R̂ ~P
)2

2m
+ α

(
R̂~L
)
·
(
R̂~S
)

+ V (|R̂ ~X|) (9.0.7)

=
~P 2

2m
+ α~L · ~S + V (| ~X|) = H. (9.0.8)

If instead H describes N particles, where the ith particle has angular momentum and spin
operators ( (i)

~L, (i)
~S), then we have

D(R̂(~θ)) = exp
(
−i~θ · ~J

)
; (9.0.9)

where the generator now reads

~J =
N∑
i=1

(
(i)
~L+ (i)

~S
)
. (9.0.10)

Energy Eigenstates & Addition of Angular Momentum The importance of rotational
symmetry is clear from eq. (9.0.2): the Hamiltonian is mutually compatible with ~J2 and J3.[

H, ~J2
]

= 0 =
[
H, J3

]
(9.0.11)

This is the primary reason why the addition of angular momentum is an important issue within
quantum mechanics. For instance, suppose the Hamiltonian describes a single particle with
angular momentum ~L and spin operator ~S, namely H is given by eq. (9.0.5), then the energy

eigenstates are usually not simultaneous eigenstates of {~L2, ~S2, L3, S3} – i.e.,

|`,m1〉 ⊗ |s,m2〉 (9.0.12)

– where

~L2 |`,m1〉 = `(`+ 1) |`,m1〉 (9.0.13)

L3 |`,m1〉 = m1 |`,m1〉 . (9.0.14)

and

~S2 |s,m2〉 = s(s+ 1) |s,m2〉 (9.0.15)

S3 |s,m2〉 = m2 |s,m2〉 . (9.0.16)

The reason is, L3 and S3 generate, respectively, rotations about the 3−axis but only in the
angular momentum and spin spaces; and not on the entire physical Hilbert space. As such, the
Hamiltonian may not remain invariant under such rotations, even if it is a scalar operator. But
instead, we may certainly use the eigenstates of { ~J2, J3, ~L2, ~S2},

~J2 |j m; ` s〉 = j(j + 1) |j m; ` s〉 (9.0.17)

J3 |j m; ` s〉 = m |j m; ` s〉 (9.0.18)

~L2 |j m; ` s〉 = `(`+ 1) |j m; ` s〉 (9.0.19)

~S2 |j m; ` s〉 = s(s+ 1) |j m; ` s〉 (9.0.20)

−j ≤m ≤ j. (9.0.21)
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The j lie between |`− s| and `+ s.

j ∈ {|`− s|, |`− s|+ 1, |`− s|+ 2, . . . , `+ s− 2, `+ s− 1, `+ s} . (9.0.22)

Also observe that, by expanding out the right hand side of ~J2 = (~L+ ~S)2,

~L · ~S =
1

2

(
~J2 − ~L2 − ~S2

)
. (9.0.23)

Hence, the Hamiltonian in eq. (9.0.5) obeys

H
(
~L2, ~S2, ~L · ~S

)
|j m; ` s〉

= H

(
`(`+ 1), s(s+ 1),

1

2
(j(j + 1)− `(`+ 1)− s(s+ 1)), . . .

)
|j m; ` s〉 . (9.0.24)

Notation For an electron orbiting around a nucleus, its energy levels are labeled by a
positive integer n > 1. To describe its state, the notation

n`j (9.0.25)

is used; except instead of using ` = 0, 1, 2, 3, · · · ≤ n− 1, we identify

s p d f g
` 0 1 2 3 4

Table (9).

For example, when n = 1, ` = 0 and j = 1/2, we have 1s1/2. The n = 2 states allow for ` = 0, 1.
In turn, when ` = 0, once again j = 1/2; which means we have 2s1/2. Whereas when ` = 1,
j = 1/2, 3/2; this translates to 2p1/2 and 2p3/2.

Splitting of energy levels due to spin-orbit interaction If H only depends on
~L2 and ~S2, then the energy levels of an electron would be degenerate with respect to the total
angular momentum j. Hence, the ~J · ~S = (1/2)( ~J2 − ~L2 − ~S2) in eq. (9.0.5) actually acts to
‘split’ these otherwise degenerate energy levels. (For the hydrogen atom, the energies with the
same n and ` but different j are known as the fine structure. The smaller splits due to the same
n and j but different ` are known as the Lamb shift.)

Problem 9.1. Suppose it is possible to simultaneously measure L3 and S3 of an electron in the
state 2p1/2. Explain what are the possible outcomes; and compute their respective probabilities.
Hint: Weinberg [2] Table 4.1 contains the relevant Clebsch-Gordan coefficients. Also note:
Weinberg’s Cj′j′′(j m;m′m′′) is equal to our 〈j′ m′, j′′ m′′| j m; j′j′′〉.

9.1 ‘Adding’ angular momentum

Let J i be the generator of rotations, i.e., acting on the entire quantum system at hand. Suppose
it is composed of two rotation generators acting on different sectors of the quantum system:

J i ≡ J ′i + J ′′i. (9.1.1)
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That is, the ~J ′ and ~J ′′ have eigenstates

~J ′2 |j1 m1, j2 m2〉 = j1(j1 + 1) |j1 m1, j2 m2〉 , (9.1.2)

~J ′′2 |j1 m1, j2 m2〉 = j2(j2 + 1) |j1 m1, j2 m2〉 ; (9.1.3)

and

J ′3 |j1 m1, j2 m2〉 = m1 |j1 m1, j2 m2〉 , (9.1.4)

J ′′3 |j1 m1, j2 m2〉 = m2 |j1 m1, j2 m2〉 . (9.1.5)

Suppose we wish to construct from these states the eigenstates of ~J2 and J3, which in turn obey

~J2 |j m; j′ j′′〉 = j(j + 1) |j m; j′ j′′〉 , (9.1.6)

J3 |j m; j′ j′′〉 = m |j m; j′ j′′〉 . (9.1.7)

We may do so once we know how to compute the Clebsch-Gordan coefficients

{〈j1 m1, j2 m2| j m; j1 j2〉}, (9.1.8)

because these angular momentum operators are Hermitian and therefore their eigenstates must
span the Hilbert space.

|j m; j1 j2〉 =
∑

m1+m2=m
−j1≤m1≤+j1
−j2≤m2≤+j2

|j1 m1, j2 m2〉 〈j1 m1, j2 m2| j m; j1 j2〉 . (9.1.9)

The rules for adding angular momentum (j1,m1) and (j2,m2) goes as follows.

• The total angular momentum j runs from |j1 − j2| to j1 + j2 in integer steps.

j ∈ {|j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2} (9.1.10)

• The azimuthal number m must simply be the sum of the individual ones.

m = m1 +m2 (9.1.11)

As a quick check, one may see that {|j1 m1, j2 m2〉} spans a (2j1 +1)(2j2 +1) dimensional space,
since the ‘left’ sector is (2j1 + 1)-dimensional and the ‘right’ is (2j2 + 1)-dimensional. On the
other hand, for a fixed j, the |j m; j1 j2〉 has m running from −j to +j in integer steps; hence
according to the rules above, there are altogether (for j1 > j2, say)

j1+j2∑
j=j1−j2

(2j + 1) = (2j1 + 1)(2j2 + 1) (9.1.12)

orthogonal states in total. (The same result would hold if j2 > j1.)
A direct consequence of these angular momentum addition rules is that half-integer spin (i.e.,

fermionic) systems can only arise from “adding” odd number of fermionic subsystems. Whereas
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integer spin (i.e., bosonic) systems may arise from “adding” even number of fermionic subsystems
or arbitrary number of bosonic ones.

Example: Atomic States We will have more to say about atomic states of electrons
bound to some central nuclei, but because the electron has intrinsic spin−1/2, its total angular
momentum in such a system is half-integer j ± 1/2 if j denotes its orbital angular momentum.
Namely, here

~J = ~L+ ~S, (9.1.13)

where the orbital angular momentum is the cross product between the position and linear mo-
mentum operators, namely ~L ≡ ~X × ~P ; and ~S is the intrinsic-spin operator.

Example: Cooper pairs In superconductivity, electrons may pair up (aka Cooper or
BCS pairs) and form bosons.

Example: Neutrons and Protons Neutrons are made up of one u and two d quarks,
whereas the proton is made of two u and one d quark. Both n and p have spin−1/2, consistent
with the spin−1/2 character of the individual quarks. (Gluons are involved in the binding of
the quarks to form the neutron and proton, but they have intrinsic spin−1.) Of course, they are
only 2 out of a plethora of QCD bound states that exist in Nature; see PDG for a comprehensive
listing.

Example: ‘Orbital’ angular momentum and spin-half Let us now consider taking
the tensor product

|`,m〉 ⊗
∣∣∣∣12 ,±1

2

〉
; (9.1.14)

for integer ` = 0, 1, 2, . . . and −` ≤ m ≤ `. This can be viewed as simultaneously describing the
orbital and intrinsic spin of a single electron bound to a central nucleus.
` = 0 For ` = 0, the only possible total j is 1/2. Hence,∣∣∣∣j =

1

2
m = ±1

2
; 0

1

2

〉
= |0, 0〉 ⊗

∣∣∣∣12 ± 1

2

〉
. (9.1.15)

` ≥ 1 For non-zero `, eq. (??) says we must have j running from `− 1/2 to `+ 1/2:

j = `± 1

2
. (9.1.16)

We start from the highest possible m value.∣∣∣∣j = `+
1

2
m = j; `

1

2

〉
= |`, `〉 ⊗

∣∣∣∣12 , 1

2

〉
. (9.1.17)

Applying the lowering operator s times, we have on the left hand side

(J−)s
∣∣∣∣j = `+

1

2
m = j; `

1

2

〉
= A

`+ 1
2

s

∣∣∣∣j = `+
1

2
m = j − s

〉
, (9.1.18)
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where the constant A
`+ 1

2
s follows from repeated application of eq. (??)

A
`+ 1

2
s =

s−1∏
i=0

√
(2`+ 1− i)(i+ 1). (9.1.19)

Whereas on the right hand side, (J−)s = (J ′− + J ′′−)s may be expanded using the binomial
theorem since [J ′−, J ′′−] = 0. Altogether,

A
`+ 1

2
s

∣∣∣∣j = `+
1

2
m = j − s; ` 1

2

〉
=

s∑
i=0

(
s

i

)
(J ′−)s−i |`, `〉 ⊗ (J ′′−)i

∣∣∣∣12 , 1

2

〉
. (9.1.20)

But (J ′′−)i
∣∣1

2
1
2

〉
= 0 whenever i ≥ 2. This means there are only two terms in the sum, which

can of course be inferred from the fact that – since the azimuthal number for the spin-half sector
can only take 2 values (±1/2) – for a fixed total azimuthal number m, there can only be two
possible solutions for the `−sector azimuthal number.

A
`+ 1

2
s

∣∣∣∣j = `+
1

2
m = j − s; ` 1

2

〉
(9.1.21)

= (J ′−)s |`, `〉 ⊗
∣∣∣∣12 , 1

2

〉
+

s!

(s− 1)!

√(
1

2
+

1

2

)(
1

2
− 1

2
+ 1

)
(J ′−)s−1 |`, `〉 ⊗

∣∣∣∣12 ,−1

2

〉
= A`s |`, `− s〉 ⊗

∣∣∣∣12 , 1

2

〉
+ s · A`s−1 |`, `− s+ 1〉 ⊗

∣∣∣∣12 ,−1

2

〉
.

Here, the constants are

A`s =
s−1∏
i=0

√
(2`− i)(i+ 1), (9.1.22)

A`s−1 =
s−2∏
i=0

√
(2`− i)(i+ 1). (9.1.23)

Writing them out more explicitly,

√
2`+ 1

√
1
√

2`
√

2
√

2`− 1
√

3 . . .
√

2`− (s− 2)
√
s

∣∣∣∣j = `+
1

2
m = j − s; ` 1

2

〉
(9.1.24)

=
√

2`
√

1
√

2`− 1
√

2
√

2`− 2
√

3 . . .
√

2`− (s− 1)
√
s |`, `− s〉 ⊗

∣∣∣∣12 , 1

2

〉
+ (
√
s)2
√

2`
√

1
√

2`− 1
√

2
√

2`− 2
√

3 . . .
√

2`− (s− 2)
√
s− 1 |`, `− s+ 1〉 ⊗

∣∣∣∣12 ,−1

2

〉
.

The factors
√

2` . . .
√

2`− (s− 2) and
√

1 . . .
√
s are common throughout.

√
2`+ 1

∣∣∣∣j = `+
1

2
m = j − s; ` 1

2

〉
=
√

2`− (s− 1) |`, `− s〉 ⊗
∣∣∣∣12 , 1

2

〉
+
√
s |`, `− s+ 1〉 ⊗

∣∣∣∣12 ,−1

2

〉
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We use the definition j − s = `+ (1/2)− s ≡ m to re-express s in terms of m.∣∣∣∣j = `+
1

2
m; `

1

2

〉
(9.1.25)

=
1√

2
√

2`+ 1

(√
2`+ 2m+ 1

∣∣∣∣`,m− 1

2

〉
⊗
∣∣∣∣12 , 1

2

〉
+
√

2`− 2m+ 1

∣∣∣∣`,m+
1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉)
.

(Remember `± 1/2 is half-integer, since ` is integer; so the azimuthal number m± 1/2 itself is
an integer.) For the states |j = `− (1/2) m〉, we will again see that there are only two terms
in the superposition over the tensor product states. For a fixed m, |j = `− (1/2) m〉 must be
perpendicular to |j = `+ (1/2) m〉. This allows us to write down its solution (up to an arbitrary
phase) by inspecting eq. (9.1.25):∣∣∣∣j = `− 1

2
m; `

1

2

〉
(9.1.26)

=
e
iδ
`− 1

2

√
2
√

2`+ 1

(√
2`− 2m+ 1

∣∣∣∣`,m− 1

2

〉
⊗
∣∣∣∣12 , 1

2

〉
−
√

2`+ 2m+ 1

∣∣∣∣`,m+
1

2

〉
⊗
∣∣∣∣12 ,−1

2

〉)
.

9.2 Isospin symmetry

The idea of rotation symmetry can be carried over to ‘internal symmetries,’ where nuclei of
similar masses/energies are considered to be the ‘same’.

Neutrons and protons: Isospin One-Half The proton has a mass of 938.272 MeV
and the neutron 939.565 MeV. Even though the former is electrically charged while the latter is
not, this new isospin symmetry would apply primarily to systems governed by the strong force.
More specifically, we postulate that the strong interactions are approximately invariant under[

p
n

]
→ U

[
p
n

]
, (9.2.1)

where U is a 2× 2 unitary matrix. The U is simply the spin-1/2 representation of the rotation
group. We have

U = exp (−iθaT a) , T a = σa/2 (9.2.2)[
T a, T b

]
= iεabcT c. (9.2.3)

We will regard the proton as the ‘spin-up’ state

T 3 |p〉 =
1

2
|p〉 ; (9.2.4)

and the neutron to be the ‘spin-down’ state

T 3 |n〉 = −1

2
|n〉 . (9.2.5)
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Other nuclei Just as the rotation group allow for different spins, we may assign an isospin
t to strong interaction states. For a given t and atomic weight A, the total electric charge obeys

Q = e

(
A

2
+ T 3

)
. (9.2.6)

As a check: the proton yields (A/2 + T 3) |p〉 = (1/2 + 1/2) |p〉 = +1 |p〉; while the neutron
(A/2 + T 3) |n〉 = (1/2− 1/2) |n〉 = 0 |n〉.

Isospin t = 1 The ground states of 12B and 12N , together with an excited state of 12C
have the same spin and energies. They form an isospin 1 multiplet.

Pions (π±, π0) – where π± are positvely/negatively charged while π0 is neutral – also form
an isospin 1 multiplet. They have nucleon number A = 0, so we have

T 3
∣∣π±〉 = ±1

∣∣π±〉 , T 3
∣∣π0
〉

= 0
∣∣π0
〉
. (9.2.7)

This is consistent with their electric charges.
Isospin t = 3/2 The ∆++, ∆+, ∆0, and ∆− have isospin 3/2, spin 3/2 and masses

≈ 1240 MeV. They decay very rapidly, due to the strong interactions; and because they decay
into particles with nucleon number 1, these ∆s themselves are assigned A = 1. We may also
identify

T 3
∣∣∆++

〉
=

3

2

∣∣∆++
〉
, T 3

∣∣∆+
〉

=
1

2

∣∣∆+
〉
, (9.2.8)

T 3
∣∣∆0
〉

= −1

2

∣∣∆0
〉
, T 3

∣∣∆−〉 = −3

2

∣∣∆−〉 . (9.2.9)

Again, this identification is consistent with their respective charges (+2,+1, 0,−1). The ampli-
tude of their decay, which must conserve isospin, according to the Wigner-Eckart theorem:

M
(
∆++ → π+ + p

)
=

〈
1 1,

1

2

1

2
; π+ p

∣∣∣∣ 3

2

3

2
; 1

1

2
; ∆++

〉
(9.2.10)

=

〈
1 1,

1

2

1

2

∣∣∣∣ 3

2

3

2
; 1

1

2

〉 〈
1,

1

2
; π+ p

∣∣∣∣ 3

2
; 1

1

2
; ∆++

〉
(9.2.11)

=

〈
1,

1

2
; π+ p

∣∣∣∣ 3

2
; 1

1

2
; ∆++

〉
; (9.2.12)

M
(
∆+ → π+ + n

)
=

〈
1 1,

1

2
− 1

2
; π+ n

∣∣∣∣ 3

2

1

2
; 1

1

2
; ∆+

〉
(9.2.13)

=

〈
1 1,

1

2
− 1

2

∣∣∣∣ 3

2

1

2
; 1

1

2

〉 〈
1,

1

2
; π+ n

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
(9.2.14)

=
1√
3

〈
1,

1

2
; π+ n

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
; (9.2.15)

M
(
∆+ → π0 + p

)
=

〈
1 0,

1

2

1

2
; π0 p

∣∣∣∣ 3

2

1

2
; 1

1

2
; ∆+

〉
(9.2.16)

=

〈
1 0,

1

2

1

2

∣∣∣∣ 3

2

1

2
; 1

1

2

〉 〈
1,

1

2
; π0 p

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
(9.2.17)

=

√
2

3

〈
1,

1

2
; π0 p

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
. (9.2.18)
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By the Wigner-Eckart theorem, the〈
1,

1

2
; π+ p

∣∣∣∣ 3

2
; 1

1

2
; ∆++

〉
,

〈
1,

1

2
; π+ n

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
,

〈
1,

1

2
; π0 p

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
no longer depends on the T 3−eigenvalues of the isospin states. But that means these reduced
matrix elements no longer distinguishes between ∆++ vs ∆+; nor between π+ vs π0; nor between
p and n. Hence, we may denote〈

1,
1

2
; π+ p

∣∣∣∣ 3

2
; 1

1

2
; ∆++

〉
=

〈
1,

1

2
; π+ n

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
=

〈
1,

1

2
; π0 p

∣∣∣∣ 3

2
; 1

1

2
; ∆+

〉
≡M0

and deduce the ratio of the decay rates – which is proportional to the square of the amplitudes,
namely Γ ∝ |M|2 – is given by

Γ (∆+ → π+ + n)

Γ (∆++ → π+ + p)
=

1

3
, (9.2.19)

Γ (∆+ → π0 + p)

Γ (∆++ → π+ + p)
=

2

3
. (9.2.20)

Problem 9.2. Verify

Γ(∆− → π− + n) = Γ(∆++ → π+ + p) (9.2.21)

Γ(∆0 → π− + p) = Γ(∆+ → π+ + n) (9.2.22)

Γ(∆0 → π0 + n) = Γ(∆+ → π0 + p). (9.2.23)

10 Symmetry, Degeneracy & Conservation Laws

Symmetry & Degeneracy Since unitary operators may be associated with symmetry
transformations, we may now understand the connection between symmetry and degeneracy. In
particular, if A is some Hermitian operator, and it forms mutually compatible observables with
the Hermitian generators {T a} of some unitary symmetry operator U(~ξ) = exp(−i~ξ · ~T ), then
A must commute with U as well. [

A,U(~ξ)
]

= 0. (10.0.1)

But that implies, if |α〉 is an eigenket of A with eigenvalue α, namely

A |α〉 = α |α〉 , (10.0.2)

so must U |α〉 be. For, [A,U ] = 0 leads us to consider

[A,U ] |α〉 = 0, (10.0.3)

A(U |α〉) = UA |α〉 = α(U |α〉). (10.0.4)
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If U |α〉 is not the same ket as |α〉 (up to an overall phase), then this corresponds to a degeneracy:

the physically distinct states U(~ξ) |α〉 and |α〉 both correspond to eigenkets of A with the same
eigenvalue α.

Symmetry & Conservation Laws Moreover, if the Hermitian operators {T a} gener-
ate a symmetry transformation, and if they also commute with the Hamiltonian H, then these
observables are conserved – at least whenever H is time independent. Specifically, if

[T a, H] = 0; (10.0.5)

then in the Heisenberg picture, if H is time independent, then eq. (4.0.16) says

dT aH
dt

= 0. (10.0.6)

If |α〉 is an eigenket of T a, i.e., T a |α〉 = α |α〉, then it will remain an eigenket under time
evolution. If U(t, t0) = exp(−iH(t− t0)) is the time evolution operator, we may check

T a (U(t, t0) |α〉) = U(t, t0)T a |α〉 = α (U(t, t0) |α〉) . (10.0.7)

Of course, |α〉 may belong to a degenerate subspace; so U |α〉 may not be equal to |α〉 (up to
a phase). Instead, this is linked to the above discussion regarding degeneracy and symmetry,
which we may surmise as:

Under time evolution governed by a time independent Hamiltonian H, the eigen-
ket of an observable T a would remain within its degenerate subspace if [T a, H] = 0.

11 Spin and Statistics

All electrons in Nature are the same; there is nothing to distinguish one electron from another
– unlike macroscopic objects, you cannot for instance put a mark on one electron and put a
different one on another, and use these marks to track their trajectories through spacetime. The
same can be said about photons. In (perturbative) relativistic quantum field theory (QFT), this
is because all indistinguishable particles are vibrations of the same quantum field.

Furthermore, relativistic QFT informs us the N particle quantum state |ψ1ψ2 . . . ψN〉 is fully
symmetric

|ψ1 . . . ψi . . . ψj . . . ψN〉 = |ψ1 . . . ψj . . . ψi . . . ψN〉 (∀i 6= j) (Bosons) (11.0.1)

if these N particles are indistinguishable integer spin s ≥ 0 ones – photons, gluons, W± and Z
have spin−1 while the Higgs boson has spin 0.

Whereas, the N particle quantum state |ψ1ψ2 . . . ψN〉 is fully anti-symmetric

|ψ1 . . . ψi . . . ψj . . . ψN〉 = − |ψ1 . . . ψj . . . ψi . . . ψN〉 (∀i 6= j) (Fermions) (11.0.2)

if these N particles are indistinguishable half-integer spin ones (i.e., spin s = n+ 1/2, for n ≥ 0
integer). Electrons, muons, taus, quarks, neutrinos all have spin−1/2.

Weinberg [2] explains, equations (11.0.1) and (11.0.2) holds for spatial dimensions greater
than 2. In 2D space, when one swaps two particles in a N -indistinguishable-particle state, the
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quantum state picks up a phase factor that is path dependent (as opposed to the ± here). Such
particles are known as anyons.
Bosonic Statistics The fully symmetric condition of eq. (11.0.1) tells us, it is entirely
possible to have all the N particles to lie within the same physical state: |ψiψi . . . ψi〉 (with N
repeated ψis).
Fermionic Statistics, Pauli Exclusion The situation is entirely different for half-integer
indistinguishable-particles.

For the N -indistinguishable-particle fermionic state, which obeys eq. (11.0.2), no
2 indistinguishable fermions can occupy the same state.

This is because

|ψ1 . . . ψi . . . ψi . . . ψN〉 = − |ψ1 . . . ψi . . . ψi . . . ψN〉 = 0 (11.0.3)

This fundamental fact, usually called the Pauli Exclusion Principle, forms the basis for under-
standing atomic and nuclear structure and more generally, the stability of matter itself.

Bosonic Wavefunctions In terms of wavefunctions, we may write theN -indistinguishable
bosonic state in terms of its one particle ones {ψn} as the sum of its product, but symmetrized
over all the coordinates (spin, momentum/position, etc.) of each of the N particles:

Ψ =
1√
N !

∑
permutations {i`}

ψ1

(
~ξΠ(i1)

)
⊗ ψ1

(
~ξΠ(i2)

)
⊗ · · · ⊗ ψ1

(
~ξΠ(iN )

)
. (11.0.4)

For example, the 2 particle state is

Ψ =
1√
2

(
ψ1(~ξ1)⊗ ψ2(~ξ2) + ψ1(~ξ2)⊗ ψ2(~ξ1)

)
. (11.0.5)

Fermionic Wavefunctions In terms of wavefunctions, we may write theN -indistinguishable
fermionic state in terms of its one particle ones {ψn} as the sum of its product, but anti-
symmetrized over all the coordinates (spin, momentum/position, etc.) of each of the N particles:

Ψ =
1√
N !

∑
permutations {i`}

(sgn of perm.)ψ1

(
~ξΠ(i1)

)
⊗ ψ1

(
~ξΠ(i2)

)
⊗ · · · ⊗ ψ1

(
~ξΠ(iN )

)
. (11.0.6)

For example, the 2 particle state is

Ψ =
1√
2

(
ψ1(~ξ1)⊗ ψ2(~ξ2)− ψ1(~ξ2)⊗ ψ2(~ξ1)

)
. (11.0.7)

This fermionic case may be written as a determinant.

Ψ =
1√
N !
εi1...iNψ1

(
~ξi1

)
⊗ ψ1

(
~ξi2

)
⊗ · · · ⊗ ψ1

(
~ξiN

)
; (11.0.8)

where the fully anti-symmetric Levi-Civita symbol is defined such that ε12...N ≡ 1.
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11.1 Spin Precession and Rotating Fermions
9Consider a spin-1/2 fermion with mass m. Let us consider its interaction with a magnetic field.
Its Hamiltonian is given by, in units where ~ = 1 = c,

H = − ge

2m
~S · ~B; (11.1.1)

where ~S is the spin operator. The g is a particle-dependent constant; for e.g., Sakurai says
g ≈ 1.91 for the neutron.

If |±〉 are the eigenstates of ~S · ~B, namely

~S · ~B |±〉 = ±B
2
|±〉 , (11.1.2)

we have the stationary states

|E±(t)〉 = exp(−iHt) |±〉 = exp
(
i
ge

2m
(~S · ~B)t

)
|±〉 (11.1.3)

= exp

(
±i ge

2m

B

2
t

)
|±〉 . (11.1.4)

The factor of 1/2 occurring within the eigenvalue of ~S · ~B is due to the fermionic spin-1/2
character of the particle. This same 1/2 is also responsible for multiplying the wavefunction by
− upon a 2π rotation. For instance, if we rotate the spin eigenstates:

|±〉 → D(R̂(2π)) |±〉 ≡ exp(−i(2π)ẑ · ~S) |±〉 (11.1.5)

|±〉 → exp(∓iπ) |±〉 = − |±〉 . (11.1.6)

Suppose we allow a fermion to propagate along two different paths, before recombining them to
observe the resulting interference pattern. Along one path we turn on a magnetic field over a
finite region; and along the other we do not. If the initial state is prepared as a spin eigenstate
(parallel to the ~B field); then, upon recombination, we must have

|±〉 → exp

(
±i ge

2m

B

2
T

)
eiδ1 |±〉+ eiδ2 |±〉 (11.1.7)

= eiδ2 exp

(
±i ge

2m

B

4
T +

i

2
(δ1 − δ2)

)
×
(

exp

(
±i ge

2m

B

4
T +

i

2
(δ1 − δ2)

)
+ exp

(
∓i ge

2m

B

4
T − i

2
(δ1 − δ2)

))
|±〉

= 2eiδ2 exp

(
±i ge

2m

B

4
T

)
cos

(
ge

2m

B

4
T + (δ1 − δ2)

)
|±〉 . (11.1.8)

The T here is the time duration the particle spent inside the magnetic field. The spin−1/2
character of the particle can be tested by testing the whether the change in magnetic field ∆B
would cause a 2π phase shift in the interference pattern consistent with this result.

∆ϕ = 2π ⇔ ge

m

∆B

4
T = 2π. (11.1.9)

9This section is based on Sakurai.
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11.2 Atomic Structure/Periodic Table & Nuclear Structure

Electrons, neutrons and protons are fermions, obeying the Pauli exclusion principle. This plays
a key role in the structure of atoms and nuclei.

For generic atomic number Z ≥ 1, to a decent approximation, the electrons move in a
spherically symmetric central potential V (r). Near the nucleus, V (r) → −Ze2/r; whereas
outside the atom, V (r)→ −e2/r (i.e., screened by the other Z − 1 electrons). We may label the
states as follows

• Principal energy label n = 1, 2, 3, · · · ≥ 1.

• Orbital angular momentum ` ≥ 0; and ` ≤ n− 1.

• There are 2(2`+ 1) states for a fixed (n, `) pair, where 2 comes from the ±1/2 spin states
of the electron; and 2` + 1 coming from the range of L3 values. (This neglects spin-orbit
interactions.)

Unlike the hydrogen atom different ` but same n may not yield the same energy. As Weinberg
explains, oftentimes larger ` yields larger energies (for the same n), because the electron wave
function goes as r` and hence spends less time near the origin. In order of increasing energy,
i.e., E1 < E2 < · · · < E6 < E7,

Shell/E Level (n, `), Increasing in energy slightly → No. of states
∑

2(2`+ 1)
E1 1s = (1, 0) 2
E2 2s = (2, 0), 2p = (2, 1) 2(1)+2(3)=8
E3 3s = (3, 0), 3p = (3, 1) 2(1)+2(3)=8
E4 4s = (4, 0), 3d = (3, 2), 4p = (4, 1) 2(1)+2(5)+2(3)=18
E5 5s = (5, 0), 4d = (4, 2), 5p = (5, 1) 2(1)+2(5)+2(3)=18
E6 6s = (6, 0), 4f = (4, 3), 5d = (5, 2), 6p = (6, 1) 2(1)+2(7)+2(5)+2(3)=32
E7 7s = (7, 0), 5f = (5, 3), 7p = (7, 1), . . . . . .

Noble gases The chemically inert elements are those with their ’shells’ filled. These are
helium (Z = 2), neon (Z = 2+8 = 10), argon (Z = 2+8+8 = 18), krypton (Z = 2+8+8+18 =
36, xenon (Z = 2 + 8 + 8 + 18 + 18 = 54), and radon (Z = 2 + 8 + 8 + 18 + 18 + 32 = 86).
Alkaline metals Alkaline metals are those with one extra electron relative to the noble
gases. This extra electron may be readily lost/roam easily throughout the metallic solid; thus
making alkaline metals chemically reactive. These are lithium (Z = 2 + 1 = 3), sodium (Z =
2 + 8 + 1 = 11), and potassium (Z = 2 + 8 + 8 + 1 = 19).
Alkai Earths Alkali earths have two electrons more than noble gases: beryllium (Z =
2 + 2 = 4), magnesium (Z = 2 + 8 + 2 = 12), and calcium (Z = 18 + 2 = 20).
Halogens Halogens are elements with one fewer electron than the noble gases: fluorine
(Z = 2 + 8− 1 = 9), chlorine (Z = 2 + 8 + 8− 1 = 17), bromine (Z = 2 + 8 + 8 + 18− 1 = 35).
Oxygen & Sulfur Oxygen (Z = 10−2 = 9) and sulfur (Z = 18−2 = 16) have 2 electrons
fewer than noble gases.

Nuclear Structure Inside the nucleus, we don’t have a central/core point-like charge.
Instead it’s a bunch of protons and neutrons. If we do continue to approximate the potential as
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a central one, i.e., V (r), and if we assume the origin is a stable point – we may Taylor expand
it about the origin as follows:

V (r) = V0 + (ω2/2)r2 + . . . , ω2 ≡ V ′′(0). (11.2.1)

In other words, the nucleus near the origin should behave like a simple harmonic oscillator.
Recall, for a fixed orbital angular momentum `, the 3D SHO oscillator energies go as

En,` = ω

(
2n+ `+

3

2

)
, n = 0, 1, 2, . . . . (11.2.2)

Every adjacent energy level alternates between odd and even parity; so the ground state is even
parity, the first excited state is odd, and so on. This means odd ` shows up only for odd 2n+ `
and even ` only for even 2n+ `.

Energy (relative to zero-point) ` No. of states
∑

2(2`+ 1)
0 s = 0 2
ω p = 1 2(3)=6
2ω s = 0, d = 2 2(1)+2(5)=12
3ω p = 1, f = 3 2(3)+2(7)=20

The shell structure for nuclei is

Z = 2, 8, 20, 28, 50, 82, 126 (11.2.3)

where Z can refer to either protons or neutrons. For example, as Weinberg points out, 4He is
‘doubly magic’ because it has Zp = 2 protons and Zn = 2 neutrons. This is why it is particularly
stable; and is in turn why during the early universe nuclei heavier than 4He were not produced
very much. Other doubly magic nuclei are 16O and 40Ca; they are produced in stars more
copiously than their neighbors.

Note that our crude simple harmonic oscillator model can only explain the first 3 shells.
According to Weinberg, as we move to the higher energy levels, not only does the potential
needs to be modified, the spin-orbit ~S · ~L coupling becomes increasingly important. Remember,
the total angular momentum j = `± 1/2. For ` = 3, that gives us j = 6/2± 1/2 = 5/2, 7/2.

12 Simple Harmonic Oscillator

12.1 One Dimension

The SHO system in 1D is defined by the Hamiltonian

H =
1

2
p2 +

1

2
ω2x2. (12.1.1)
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Energy Lower Bound To diagonalize this Hamiltonian, we first seek to “complete the
square” in the following sense. Consider, for real α,(

1√
2

(p− iαx)

)†(
1√
2

(p− iαx)

)
=

1

2
(p+ iαx) (p− iαx) (12.1.2)

=
1

2

(
p2 + α2x2

)
+
iα

2
(xp− px) (12.1.3)

=
1

2

(
p2 + α2x2

)
− α

2
. (12.1.4)

Comparing the last line with eq. (12.1.1), we see that, by choosing α = ω,

H = ω

(
1√
2ω

(p− iωx)

)†(
1√
2ω

(p− iωx)

)
+
ω

2
(12.1.5)

= ω

(
a†a+

1

2

)
; (12.1.6)

where we have defined

a ≡ 1√
2ω

(p− iωx) . (12.1.7)

We may immediately deduce

a† =
1√
2ω

(p+ iωx) . (12.1.8)

We may readily invert this relation to find

X = − i√
2ω

(
a† − a

)
and P =

√
ω

2

(
a† + a

)
. (12.1.9)

At this point, we may infer from eq. (12.1.6) that there is a lower bound on the energy levels
of the SHO. If |E0〉 is the (unit norm) lowest energy eigenstate, and if we denote |Ψ〉 ≡ a |E0〉,
then

〈E0 |H|E0〉 = E0 〈E0|E0〉 = E0 = ω

〈
E0

∣∣∣∣a†a+
1

2

∣∣∣∣E0

〉
(12.1.10)

= ω

(
(a |E0〉)† (a |E0〉) +

1

2
〈E0|E0〉

)
(12.1.11)

= ω

(
〈Ψ0|Ψ0〉+

1

2

)
≥ ω

2
. (12.1.12)

Raising & Lowering (aka “Ladder”) Operators The next step is to recognize the roles
of a and a† in equations (12.1.7) and (12.1.8), respectively, “lowering” and “raising” operators.[

a, a†
]

=
1

2ω
[p− iωx, p+ iωx] (12.1.13)

= − iω
2ω

([x, p]− [p, x]) (12.1.14)[
a, a†

]
= +1. (12.1.15)
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Whereas

[H, a] = ω
[
a†a, a

]
= ω

(
a† [a, a] +

[
a†, a

]
a
)

(12.1.16)

= ω
[
a†, a

]
a = −ωa. (12.1.17)

Now [A,B]† = −[A†, B†], hence

−
[
H, a†

]
= −ωa† (12.1.18)[

H, a†
]

= ωa†. (12.1.19)

Now, if |En〉 is some energy eigenstate, a† |En〉 is an energy eigenstate with energy En+ω because
of eq. (12.1.19):

H
(
a† |En〉

)
=
(
Ha† − a†H + a†H

)
|En〉 (12.1.20)

=
(
[H, a†] + Ena

†) |En〉 =
(
ωa† + Ena

†) |En〉 (12.1.21)

= (En + ω)
(
a† |En〉

)
. (12.1.22)

Since a† |En〉 ∝ |En + ω〉, we must have (a†)† |En〉 = a†(a† |En〉) ∝ a† |En + ω〉 ∝ |En + 2ω〉; i.e.,
in words: because each application of a† on an energy eigenstate yields an energy eigenstate with
energy +ω larger than the previous, ` ≥ 1 applications must yield

(a†)` |En〉 ∝ |En + `ω〉 . (12.1.23)

Likewise, if |En〉 is some energy eigenstate, a |En〉 is an energy eigenstate with energy En − ω
because of eq. (12.1.17):

H (a |En〉) = (Ha− aH + aH) |En〉 (12.1.24)

= ([H, a] + Ena) |En〉 = (−ωa+ Ena) |En〉 (12.1.25)

= (En − ω) (a |En〉) . (12.1.26)

Iterating this reasoning ` times therefore hands us

a` |En〉 ∝ |En − `ω〉 . (12.1.27)

Since there is a lower bound on energy, however, this process cannot continue indefinitely. Sup-
pose |E0〉 is the lowest energy eigenstate, because a |E0〉 cannot return a lower energy eigenstate,
the only consistent answer is zero:

a |E0〉 = 0. (12.1.28)

Energies Recalling eq. (12.1.6), this means the lowest energy eigenstate must obey

E0 |E0〉 = ω

(
a†a+

1

2

)
|E0〉 =

ω

2
|E0〉 ; (12.1.29)

i.e.,

E0 =
ω

2
. (12.1.30)
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Every application of the raising operator adds ω to the energy level, we must have

En≥1 = ω

(
n+

1

2

)
. (12.1.31)

Note that this discussion tells us there cannot be a separate infinite set of energy levels with a
lowest energy E0 + ε, where ε < E1−E0, where E0 is the lowest of all energies (by assumption).
For, the lowering operator acting on it would again be zero, since E0 + ε−ω < E0. But then its
energy is uniquely determined by ω(a†a+ (1/2)) |E0 + ε〉 = (ω/2) |E0 + ε〉.

Ground State Moreover, eq. (12.1.28) tells us

〈x |p− iωx|E0〉 = 0, (12.1.32)

−i∂x 〈x|E0〉 = iωx 〈x|E0〉 , (12.1.33)

∂x ln 〈x|E0〉 = −ωx, (12.1.34)

ln 〈x|E0〉 = −ω
2
x2 + constant, (12.1.35)

〈x|E0〉 = C exp
(
−ω

2
x2
)
, (12.1.36)

for some constant C. This constant may be fixed by demanding the wavefunction to have unit
norm. Taking C to be real,

〈E0|E0〉 = C2

∫ +∞

−∞
e−ωx

2

dx = 1, (12.1.37)

C4

(∫ +∞

−∞
e−ωx

2

dx

)2

= 1, (12.1.38)

C4

(∫
R2

e−ω(x2+y2)dxdy

)
= 1, (12.1.39)

C4

(
2π

∫ +∞

0

e−ωρ
2

ρdρ

)
= 1, (12.1.40)

C4

(
2π

−2ω

∫ +∞

0

∂

∂ρ
e−ωρ

2

dρ

)
= 1, (12.1.41)

C4
(π
ω

)
= 1 ⇒ C =

(ω
π

) 1
4
. (12.1.42)

To sum, up to an overall multiplicative phase, the non-degenerate ground state wavefunction is

〈x|E0〉 =
(ω
π

) 1
4

exp
(
−ω

2
x2
)
, E0 =

ω

2
. (12.1.43)

Excited States We already know from equations (12.1.8) and (12.1.23) that

〈x|En〉 ∝ (−i∂x + iωx)` 〈x|E0〉 . (12.1.44)

To normalize this state,(
(a†)` |E0〉

)† (
(a†)` |E0〉

)
=
(
a†(a†)`−1 |E0〉

)† (
(a†)` |E0〉

)
(12.1.45)

=
(
(a†)`−1 |E0〉

)† (
a(a†)` |E0〉

)
. (12.1.46)
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Let us now prove the following statement:[
a, (a†)`

]
= ` · (a†)`−1. (12.1.47)

The ` = 1 case is simply the commutation relation [a, a†] = 1 in eq. (12.1.14). Assuming the
(k > 1)th case is true, namely

[
a, (a†)k

]
= k · (a†)k−1,[

a, (a†)k+1
]

= a†
[
a, (a†)k

]
+
[
a, a†

]
(a†)k (12.1.48)

= a† · k · (a†)k−1 + (a†)k = (k + 1) · (a†)k+1. (12.1.49)

Returning to eq. (12.1.46), and keeping in mind eq. (12.1.28), we may now compute

a(a†)` |E0〉 =
(
a(a†)` − (a†)`a+ (a†)`a

)
|E0〉 (12.1.50)

=
[
a, (a†)`

]
|E0〉 = ` · (a†)`−1 |E0〉 ; (12.1.51)

and hence deduce that(
(a†)` |E0〉

)† (
(a†)` |E0〉

)
= ` ·

(
(a†)`−1 |E0〉

)† (
(a†)`−1 |E0〉

)
(12.1.52)

= `(`− 1) ·
(
(a†)`−2 |E0〉

)† (
(a†)`−2 |E0〉

)
= . . . (12.1.53)

= `! 〈E0|E0〉 = `!. (12.1.54)

To sum: all unit norm excited states may be written as, for ` = 1, 2, 3, . . . ,

|E`≥1〉 =
(a†)`√
`!
|E0〉 , E` = ω

(
`+

1

2

)
. (12.1.55)

In the position representation,

〈x|E`〉 =
(ω/π)1/4

√
`!

(
−i∂x − ωx√

2ω

)`
exp

(
−ω

2
x2
)
. (12.1.56)

Problem 12.1. Parity Explain why 〈−x|E`〉 = (−)` 〈x|E`〉.

Problem 12.2. Differential Equation for Excited States Guided by the result in eq.
(12.1.56), we may infer that the excited state eigenfunction must take the following factorized
form:

〈x|E`〉 = Q`(ξ) 〈x|E0〉 , (12.1.57)

where ξ ≡
√
ωx. Show that Q`(ξ) obeys

Q′′` (ξ)− 2ξQ′`(ξ) + 2`Q`(ξ) = 0. (12.1.58)

By demanding that the ξ → ∞ limit yields a polynomial; and by comparing its highest power
with that obtained with eq. (12.1.56), show that (up to a phase factor)

Q`(ξ) =
H`(ξ)

2`/2
√
`!
, (12.1.59)

where H`(ξ) is the Hermite polynomial. Hint: The highest power of the Hermite polynomial can
be extracted from its power series in eq. 18.5.13 of NIST’s DLMF.
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12.2 Schrödinger vs Heisenberg

Schrödinger Picture So far, we have been working within the Schrödinger picture where,
if |ψ(t)〉s describes a physical system, it obeys the time dependent Schrödinger equation

i∂t |ψ(t)〉 = H |ψ(t)〉 , (12.2.1)

whose solution can be written in terms of the evolution operator

|ψ(t > t0)〉s = U(t, t0) |ψ(t0)〉s , (12.2.2)

where

U(t, t0) = exp(−iH(t− t0)); (12.2.3)

Most observables, such as the position and momentum operators, on the other hand, are time-
independent. This means their eigenvectors are also time-independent.

Heisenberg Picture On the other hand, in the Heisenberg picture, we switch to a
“rotating basis” of sorts, such that the state |ψ〉 describing the physical system no longer depends
on time; but the operators such as position or momentum now do.

We will need to choose a time t0 where the two pictures coincide. The underlying motivation
behind the switching from Schrödinger to Heisenberg pictures is an alternate description of the
expectation value of some operator O. Starting in the Schrödinger picture,

s 〈ψ(t) |Os|ψ(t)〉 s = s

〈
ψ(t0)

∣∣e+iHs(t−t)Ose
−iHs(t−t0)

∣∣ψ(t0)
〉

s ≡ H 〈ψ |OH|ψ〉 H; (12.2.4)

where the Heisenberg picture operator is

OH(t) ≡ e+iHs(t−t)Ose
−iHs(t−t). (12.2.5)

We may obtain a first order differential equation for such a Heisenberg picture operator. As-
suming its Schrödinger picture counterpart does not depend on time,

∂tOH(t) = i [HH, OH(t)] . (12.2.6)

Note that, for time independent Hamiltonians, their form is picture independent since they
commute at all times:

HH = eiHs(t−t0)Hse
−iHs(t−t0) = eiHs(t−t0)e−iHs(t−t0)Hs = Hs. (12.2.7)

Also note that, the computation of commutators can be carried out in either picture; for operators
A and B and denoting U(t, t0) ≡ exp(−iHs(t− t0)),

[AH, BH] = U(t, t0)†AsU(t, t0)U(t, t0)†BsU(t, t0)− U(t, t0)†BsU(t, t0)U(t, t0)†AsU(t, t0) (12.2.8)

= U(t, t0)† [As, Bs]U(t, t0). (12.2.9)

Spectra Since the Heisenberg operators depend on time, the observables now depend on time
too. For example, the position operator is

XH(t) = e+iHs(t−t0)Xse
−iHs(t−t0) (12.2.10)

58



and therefore its eigenvectors must “anti-evolve” in time in that

|x, t〉H = e+iHs(t−t0) |x〉s . (12.2.11)

We may check:

XH(t) |x, t〉H = e+iHs(t−t0)Xse
−iHs(t−t0)e+iHs(t−t0) |x〉s (12.2.12)

= e+iHs(t−t0)Xs |x〉s (12.2.13)

= xe+iHs(t−t0) |x〉s = x |x, t〉H . (12.2.14)

More generally, for any observable OH,

OH(t) |λ, t〉H = λ |λ, t〉H , (12.2.15)

|λ, t〉H = e+iHs(t−t0) |λ〉s . (12.2.16)

SHO EoM, Initial Value Problem We may apply these considerations to the SHO
situation. Firstly, note that its Hamiltonian in the Heisenberg pictures is

HH = eiHs(t−t0)

(
1

2
PsPs +

1

2
ω2XsXs

)
e−iHs(t−t0) (12.2.17)

=
1

2
eiHs(t−t0)Pse

−iHs(t−t0)eiHs(t−t0)Pse
−iHs(t−t0) (12.2.18)

+
1

2
ω2eiHs(t−t0)Xse

−iHs(t−t0)eiHs(t−t0)Xse
−iHs(t−t0) (12.2.19)

=
1

2
P 2

H +
ω2

2
X2

H. (12.2.20)

Let us compute the equations-of-motion (EoM) of the position operator in the Heisenberg
picture.

ẊH = i [HH, XH] = ieiH(t−t0)

[
1

2
P 2

s +
ω2

2
X2

s , Xs

]
e−iH(t−t0) (12.2.21)

=
i

2
eiH(t−t0) (Ps [Ps, Xs] + [Ps, Xs]Ps) e

−iH(t−t0) (12.2.22)

= ieiH(t−t0) (−iPs) e
−iH(t−t0) = PH. (12.2.23)

ṖH = i [HH, PH] = ieiH(t−t0)

[
1

2
P 2

s +
ω2

2
X2

s , Ps

]
e−iH(t−t0) (12.2.24)

=
iω2

2
eiH(t−t0) (Xs [Xs, Ps] + [Xs, Ps]Xs) e

−iH(t−t0) (12.2.25)

= iω2eiH(t−t0) (iXs) e
−iH(t−t0) = −ω2XH. (12.2.26)

This means ẌH = ṖH = −ω2XH; we see that the Heisenberg position operator obeys its classical
EoM (see also the discussion around eq. (4.0.19)):

ẌH + ω2XH = 0. (12.2.27)
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Like its classical counterpart the solution may be written in terms of sine and cosine:

XH(t) = A cos (ω(t− t0)) +B sin (ω(t− t0)) ; (12.2.28)

except A and B are now operators. When t = t0 the sine vanishes and we must recover the
Schrödinger picture position operator. This implies A = Xs. Whereas, since ẊH = PH =
Aω sin(ω(t− t0)) +Bω cos(ω(t− t)), we must have when t = t0, B · ω = Ps. Altogether,

XH(t) = Xs cos (ω(t− t0)) +
Ps

ω
sin (ω(t− t0)) . (12.2.29)

This leads us to the following insight. Remember that the expectation value of some operator
O in the Heisenberg picture with respect to some physical state |ψ〉H = |ψ(t0)〉s is given by
〈ψ0 |OH(t)|ψ0〉.

H 〈ψ|XH(t) |ψ〉 ,H = 〈ψ(t0)|Xs |ψ(t0)〉 cos (ω(t− t0))

+
sin (ω(t− t0))

ω
〈ψ(t0)|Ps |ψ(t0)〉 . (12.2.30)

At the level of expectation values, the Heisenberg picture position operator written in terms of
the Schrödinger picture operators is simply the initial value formulation: 〈XH(t)〉 is the initial
〈X〉 and 〈P 〉 (i.e., in the Schrödinger picture) evolved forward in time.

Problem 12.3. Show that eq. (12.2.29) may be expressed as

XH(t) =
1√
2ω

(
αe−iω(t−t0) + α†eiω(t−t0)

)
, (12.2.31)

where α ≡ ia; with a being the lowering operator of equations (12.1.7), (12.1.8) and (12.1.9).
In quantum field theory, each momentum mode of a given (linear) field operator obeys

something analogous to eq. (12.2.27); which in turn implies every momentum mode of the
quantum field may be identified with eq. (12.2.31) – where, the raising/lowering operators
become creation/destruction operators that create/destroy particles of the particular momentum
at hand.

12.3 Higher Dimensions

The SHO in higher dimensions D > 1 is described by

H =
1

2
~P 2 +

ω2

2
~X2. (12.3.1)

Spectrum Because this Hamiltonian is the sum of 1D ones, namely

H =
1

2
PiPi +

ω2

2
X iX i, (12.3.2)

we may immediately take the tensor product of 1D SHO to diagonalize it:

|n1, . . . , nD〉 = |En1〉 ⊗ · · · ⊗ |EnD〉 , (12.3.3)

H |n1, . . . , nD〉 = En1,...,nD |n1, . . . , nD〉 = (En1 + . . . EnD) |n1, . . . , nD〉 (12.3.4)

= ω

(
n1 + · · ·+ nD +

D

2

)
|n1, . . . , nD〉 , (12.3.5)
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where the {n1, . . . , nD} are a collection of non-negative integers. This is because, for a fixed i,(
1

2
PiPi +

ω2

2
X iX i

)
|n1, . . . , nD〉 (12.3.6)

=

(
1

2
PiPi +

ω2

2
X iX i

)
|En1〉 ⊗ · · · ⊗ |EnD〉 (12.3.7)

= |En1〉 ⊗ · · · ⊗
(

1

2
PiPi +

ω2

2
X iX i

)
|Eni〉 ⊗ · · · ⊗ |EnD〉 = Eni |n1, . . . , nD〉 . (12.3.8)

In the position representation, the corresponding unit norm energy wavefunction is

〈~x|n1, . . . , nD〉 =
(ω/π)D/4√
n1! . . . nD!

D∏
i=1

{(
−i∂x − ωx√

2ω

)ni
exp

(
−ω

2
xixi

)}
. (12.3.9)

Raising and Lowering Operators There are now D pairs of raising/lowering operators

ai =
1√
2ω

(
Pi − iωX i

)
, (12.3.10)

a†i =
1√
2ω

(
Pi + iωX i

)
. (12.3.11)

They obey [
ai, a

†
j

]
= δij, [ai, aj] = 0 =

[
a†i , a

†
j

]
; (12.3.12)

as well as

[H, ai] = −ωai and
[
H, a†i

]
= +ωa†i . (12.3.13)

Parity and Rotational Symmetry Under parity ~x→ −~x, we have

〈−~x|n1, . . . , nD〉 = (−)n1+n2+···+nD 〈~x|n1, . . . , nD〉 . (12.3.14)

Note too that the Hamiltonian is rotationally symmetric. Hence in 3D, the energy eigenstates
must be simultaneous eigenstates of

H, ~J2, J3, P̌ . (12.3.15)

Three Dimensions We note that, because Ji and ~J2 commutes with the Hamiltonian, we
expect that the energy eigenstates 〈~x|n1, . . . , nD〉 can be built out of the former’s eigenstates.
In 3D, this means we should be able to write

〈~x|n1, n2, n3〉 =
∑
`,m

χn1,n2,n3

`,m Rn1,n2,n3

`,m (r)Y m
` (θ, φ). (12.3.16)

Examining eq. (12.3.9), we see that, for a fixed {n1, n2, n3}, the raising operators acting on
the Gaussian exp(−(ω/2)~x2) produces at most a degree n1 + n2 + n3 polynomial. Hence, the
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maximum ` in the above sum must be `max = n1 + n2 + n3. For each ` remember m runs over
the 2` + 1 values, from −` to +`. Whereas `min = 0; for example, (a†)2 exp(−(ω/2)x2) would
produce a constant term multiplying the gaussian. However, we have to remember eq. (12.3.14);
which in turn implies there must only even parity Y m

` if N ≡ n1 + n2 + n3 were even and odd
parity Y m

` if N were odd.

〈~x|n1, n2, n3〉 =
N∑
`=0
` even

+∑̀
m=−`

χn1,n2,n3

`,m Rn1,n2,n3

`,m (r)Y m
` (θ, φ), Even N ≡ n1 + n2 + n3 (12.3.17)

=
N∑
`=1
` odd

+∑̀
m=−`

χn1,n2,n3

`,m Rn1,n2,n3

`,m (r)Y m
` (θ, φ), Odd N ≡ n1 + n2 + n3. (12.3.18)

For even N this means there is 1 term for ` = 0; 2(2) + 1 for ` = 2; 2(4) + 1 for ` = 4; and
altogether

N/2∑
k=0

(4k + 1) = 4
N + 2

2

N

4
+
N + 2

2
=

(N + 1)(N + 2)

2
(12.3.19)

terms in the superposition of spherical harmonics to form eq. (12.3.9) of a fixed N .
Rotational and parity invariance tells us, for some fixed N ≡ n1 + n2 + n3, the simultaneous

eigenstate of energy, parity and rotational operators is

〈~x|N, `,m〉 = RN
` (r)Y m

` (θ, φ) (12.3.20)

which transforms under parity as

〈−~x|N, `,m〉 = (−)` 〈~x|N, `,m〉 . (12.3.21)

On the other hand, the energy eigenstate N is a polynomial of at most degree N , which trans-
forms as

〈−~x|N, `,m〉 = (−)N 〈~x|N, `,m〉 . (12.3.22)

Altogether

n1 + n2 + n3 ≡ N = `+ 2s, (12.3.23)

where s is an arbitrary integer. Hence, the energy levels are

EN=`+2s = ω

(
`+ 2s+

3

2

)
. (12.3.24)

For even N , ` can therefore run from 0 to N ; whereas for odd N , ` can run from 1 to N .

Problem 12.4. Prove that, for odd N ≡ n1 + n2 + n3, there are also (N + 1)(N + 2)/2 terms
in eq. (12.3.18).
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Problem 12.5. N = 2 in 3D Write down all the wave functions 〈~x|N = 2, `,m〉, where

`(`+1) is the eigenvalue of ~J2 and −` ≤ m ≤ +` is that of J3, for a given energy ω(N+3/2).

Problem 12.6. Radial Wavefunction Let the energy eigenfunctions of the 3D SHO with
eigenvalue E, namely 〈r, θ, φ|E〉, be

〈r, θ, φ|E〉 = R(
√
ωr)Y m

` (θ, φ) exp
(
−ω

2
r2
)
. (12.3.25)

Show that the radial wavefunction R obeys

R′′(ξ) +
2

ξ
(1− ξ2)R′(ξ)−

(
3− 2E

ω
+
`(`+ 1)

ξ2

)
R(ξ) = 0; (12.3.26)

where ξ ≡
√
ωr. Can you show the appropriate solutions are

R(ξ) = χn,` · ξ` 1F1

[
−n, 3

2
+ `, ξ2

]
; (12.3.27)

where n is a non-negative integer and χn,` is a normalization constant. Explain why the energy
levels are described by

E = ω

(
2n+ `+

3

2

)
, n = 0, 1, 2, . . . . (12.3.28)

Using this energy eigenvalue result, and upon re-scaling R(ξ) = ξ`ρ(ξ2), show that ρ(ζ ≡ ξ2)
satisfies the generalized Laguerre polynomial ODE

ζρ′′(ζ) +

(
3

2
+ `− ζ

)
ρ′(ζ) + nρ(ζ) = 0. (12.3.29)

Hints: The ` = 0 case is already solved. Focus on ` > 0; and examine the r → 0 and r → ∞
limits. You will find that one of the two linearly independent solutions, as r → 0, is not
normalizable. The other solution is not normalizable as r →∞ unless it becomes a polynomial.
For this last step, you might need the fact that the Gamma function becomes singular at 0 and
the negative integers.

13 2-body Problem

Problem 13.1. In 2 body problems, where ~X1,2 refers to the positions and ~P1,2 to their corre-
sponding momentum operators; show that the definitions

~R ≡ ~X1 − ~X2, (13.0.1)

~XCM ≡
m1

~X1 +m2
~X2

m1 +m2

(13.0.2)
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and

~P ≡ ~P1 + ~P2 (13.0.3)

~ΠCM ≡ µ

(
~P1

m1

−
~P2

m2

)
, µ ≡ m1m2

m1 +m2

; (13.0.4)

lead to the position representations〈
~R, ~XCM

∣∣∣~P ∣∣∣ψ〉 = −i∂ ~XCM

〈
~R, ~XCM

∣∣∣ψ〉 , (13.0.5)〈
~R, ~XCM

∣∣∣~Π∣∣∣ψ〉 = −i∂~R
〈
~R, ~XCM

∣∣∣ψ〉 . (13.0.6)

14 Rigid Body Dynamics in 3D Space

14.1 Classical

Setup By rigid body motion, I mean here a collection of point particles that are fixed
in their positions relative to one another but may rotate as a whole around an arbitrary and
possibly time-dependent axis. Or a continuous material object that remains fixed in shape
and solid throughout its interior, but may rotate/change its orientation as a function of time.
Quantitatively, if ~x(t) refers to a point within this rigid body, we say

xa(t) = Rab(t)xb, (14.1.1)

where Rab are components of a time-dependent rotation matrix; and xb are a set of time-
independent coordinates that may be associated with that of the particle/location in question
but relative to some frame co-rotating with the body itself.10

Dynamics In reality, there must be some effective inter-particle potential that holds
the body together; but within this rigid body assumption we may ignore it since all positions are
fixed relative to the body-frame and whatever potential energy must become a constant in this
limit. Hence the dynamics must be entirely attributed to the kinetic energy, which we now seek.
Focusing on the point particles case, we let the time-dependent coordinate of the nth particle
be denoted as ~x(n), such that

xa(n)(t) = Rab(t)xb(n). (14.1.2)

(Remember, the same rotation matrix Rab applies to all particles {~x(n)} because they form a
rigid body.) Hence, if mn is the mass of the nth particle, its velocity is

ẋa(n)(t) = va(n) = Ṙab(t)xb(n); (14.1.3)

10More specifically, say at t = 0, we may view xa(t = 0) = Rab(t = 0)xb as the change-of-coordinates from the
co-moving body frame coordinate system {xa} to the ‘ambient frame’ one {xa}.
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and total kinetic energy

K =
1

2

∑
n

mn~v
2
(n) (14.1.4)

=
1

2

∑
n

mnṘ
ap(t)Ṙaq(t)xp(n)x

q
(n) =

1

2
NpqṘapṘaq; (14.1.5)

Nab ≡
∑
n

mnx
a
(n)x

b
(n). (14.1.6)

We should be able to express this kinetic energy solely in terms of angular momentum variables,
since the only motion under consideration is rotational. As a first step, we note that viewed as
a matrix, the {Rab} obeys

RTR = I. (14.1.7)

Since this is true for all time, differentiating it once yields ṘTR+RTṘ = 0, which in turn implies

ṘTR = −RTṘ. (14.1.8)

On the other hand, since

ṘTR =
(
RTṘ

)T

, (14.1.9)

we see that ṘTR is an anti-symmetric matrix. In the 3D space we are in, this anti-symmetry
means we may compute its dual:

Ωa =
1

2
εabc(ṘT)bfRfc; (14.1.10)

ṘfaRfb = εabcΩc. (14.1.11)

We may multiply both sides with Rib,

Ṙia = RibεabcΩc. (14.1.12)

Problem 14.1. Relation to vector calculus In vector calculus, we learn that the velocity
~v(t) ≡ ~̇x(t) of some particle at ~x(t) due to rotation about some axis ω̂ (where ω̂ is a unit vector)
with angular speed ω is given by

~̇x(t) = ~v(t) = ~ω(t)× ~x(t), ~ω ≡ ωω̂. (14.1.13)

Remember that xa(t) = Rab(t)xb and the cross product may be written in terms of the Levi-
Civita tensor (in 3D flat space). Show that eq. (14.1.13) implies eq. (14.1.12) provided we
identify

~Ω = −~ω. (14.1.14)
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Let us now express the kinetic energy in eq. (14.1.5) in terms of Ωa. Employing eq. (14.1.12),

K =
1

2
N ijRapεipqΩqRamεjmnΩn. (14.1.15)

Because of the orthogonality of the rotation matrices, RapRam = δpm.

K =
1

2
N ijεipqΩqεjpnΩn. (14.1.16)

Next we exploit the identity

εipqεjpn = δijδ
q
n − δinδ

q
j . (14.1.17)

to infer

K =
1

2

(
N iiδqn −Nnq

)
ΩqΩn ≡ 1

2
ΩqIqnΩn, (14.1.18)

Iab =
∑
n

mn

(
xc(n)x

c
(n)δ

ab − xa(n)x
b
(n)

)
. (14.1.19)

The Iab here is dubbed the moment-of-inertia tensor.

Problem 14.2. Compute the moment-of-intertia tensor (about the center-of-mass) for a tri-
atomic system which we shall approximate as composed of 1 point mass m1 at

xa(1) = `(0, 0, 1); (14.1.20)

and 2 equal masses m2 at

xa(2±) =
m1

m2

`

2
(± tan(θ), 0,−1) . (14.1.21)

Verify that (0, 0, 0) is indeed the center-of-mass; and draw a figure to explain where these atoms
are located.

Orbital angular momentum is

Ja(t) = εabc
∑
n

mnx
b
(n)(t)ẋ

c
(n)(t) (14.1.22)

= εabc
∑
n

mnR
bp(t)xp(n)Ṙ

cq(t)xq(n) (14.1.23)

= εabc
∑
n

mnR
bp(t)RcmεqmlΩlxp(n)x

q
(n). (14.1.24)

From the co-factor expansion definition of the determinant, as well as the property of rotation
matrices that detR = 1,

εabcRapRbqRcl = εpql (14.1.25)

εcabRapRbq = Rclεpql. (14.1.26)
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This in turn tells us

Ja(t) =
∑
n

mnR
acεpmcεqmlΩlxp(n)x

q
(n). (14.1.27)

Using eq. (14.1.17),

Ja(t) =
∑
n

mn(δpqδ
c
l − δ

p
l δ
c
q)R

acΩlxp(n)x
q
(n) (14.1.28)

= Rac
∑
n

mn(xp(n)x
p
(n)δ

cl − xc(n)x
l
(n))Ω

l (14.1.29)

= RacIclΩl ≡ RacJ c. (14.1.30)

In matrix notation

J = RJ ⇔ RTJ = J . (14.1.31)

KE for invertible moment-of-inertia tensor We now notice that, if the moment-of-
inertia tensor has an inverse, then

J a(I−1)abJ b = (IΩ)TI−1(IΩ) = ΩTII−1IΩ (14.1.32)

= ΩaIabΩb. (14.1.33)

Recalling the expression for the kinetic energy in eq. (14.1.18), we see that

K =
1

2
J a(I−1)abJ b. (14.1.34)

KE for non-invertible moment-of-inertia tensor Now, in a basis where Nab is diagonal,
such that

Nab = diag
(
N1, N2, N3

)
; (14.1.35)

we have

Iab = diag
(
N2 +N3, N1 +N3, N1 +N2

)
. (14.1.36)

Problem 14.3. Starting from eq. (14.1.35), verify eq. (14.1.36).

We see that TrN =
∑

nmn~x
2
(n) ≥ 0. This in turn says the sum of the eigenvalues of N are

always non-negative; in fact, all the eigenvalues are non-negative, i.e., N i ≥ 0. This in turn
means, if Iab is non-invertible, since 2 out of the 3 N is appear in every diagonal entry of Iab

above, that means at least 2 out of 3 of them must be zero. This leaves only one non-zero
component, which we shall simply denote at the 3rd:

Iab = diag
(
N3, N3, 0

)
, N1 = N2 = 0. (14.1.37)

In such a situation, we have

K =
1

2
Ω1I11Ω1 +

1

2
Ω2I22Ω2 (14.1.38)

=
1

2N3

{(
J 1
)2

+
(
J 2
)2
}

=
1

2N3

{
~J 2 −

(
J 3
)2
}
. (14.1.39)
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14.2 Quantum

To quantize the rigid body dynamics, we shall treat the Rab as a 3 × 3 matrix of Hermitian
operators. We will assume they commute among themselves [Rab, Rpq] = 0; but not with the
time derivatives [Rab, Ṙpq] 6= 0. Moreover, the x(n)s – and, hence, the moment-of-inertia tensor
– remain as numbers. This scheme will ensure the positions ~x(n)(t) commute among themselves;
but not with their momentum.

We will in fact quantize the rigid body dynamics by appealing to the angular momentum
algebra: [

Ja, J b
]

= iεabcJ c. (14.2.1)

Because position must transform as a 3-vector under rotation, we must also have[
Ja, xb(n)

]
= iεabcxc(n), (14.2.2)[

Ja, Rbd
]
xd(n) = iεabcRcdxd(n). (14.2.3)

But since these {xd(n)} are arbitrary, we deduce that the rotation operators are actually 3-vectors,
for a fixed d: [

Ja, Rbd
]

= iεabcRcd. (14.2.4)

In particular, when a = b, they commute with the angular momentum operators because the
Levi-Civita is fully anti-symmetric. [

Ja, Rad
]

= 0 (14.2.5)

This means when defining the J is as operators (cf. eq. (14.1.31)), namely

J a = J bRba, (14.2.6)

there is no operator-ordering ambiguity since the repeated index b means J bRba = RbaJ b. This
allows us to write down the Hamiltonian of the rotator system immediately.

Hamiltonian for invertible moment-of-inertia tensor Because energy is entirely
kinetic,

H =
1

2
J a(I−1)abJ b. (14.2.7)

Hamiltonian for non-invertible moment-of-inertia tensor In a basis where

Nab = diag
(
N1, N2, N3

)
; (14.2.8)

we have

Iab = diag
(
N2 +N3, N1 +N3, N1 +N2

)
. (14.2.9)

Setting N1 = N2 = 0,

Iab = diag
(
N3, N3, 0

)
. (14.2.10)
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In turn,

H =
1

2N3

{(
J 1
)2

+
(
J 2
)2
}

=
1

2N3

{
~J 2 −

(
J 3
)2
}
. (14.2.11)

Commutation Relations We now proceed to compute[
Ja,J b

]
=
[
Ja, J cRcb

]
= [Ja, J c]Rcb + J c

[
Ja, Rcb

]
(14.2.12)

= iεacdJdRcb + iεacdJ cRdb (14.2.13)

= iεacd(JdRcb − JdRcb). (14.2.14)

In other words [
Ja,J b

]
= 0. (14.2.15)

In particular, J3 and J 3 are compatible observables. Next,[
J a,J b

]
=
[
J a, J cRcb

]
= [J a, J c]Rcb + J c

[
J a, Rcb

]
(14.2.16)

=
[
J a, J cRcb

]
= J c

[
JeRea, Rcb

]
= J c

[
Je, Rcb

]
Rea (14.2.17)

= iεecdJ cRdbRea = −iJ cRcdεabd. (14.2.18)

We have arrived at the commutation relations for the J s; they obey an angular-momentum-like
Lie algebra: [

−J a,−J b
]

= iεabc(−J c). (14.2.19)

Note, however, they are scalars under rotation because of eq. (14.2.15). On the other hand,
because rotations are orthogonal transformations,

~J2 ≡ JaJa = J aJ a ≡ ~J 2. (14.2.20)

To sum: The { ~J 2 = ~J2,J 3, J3} form a set of mutually compatible observables; with the Lie
algebras of J is and −J is both obeying that of the 3D angular momenta. Their simultaneous
eigenstates are

~J2 |J M K〉 = ~J 2 |J M K〉 = J(J + 1) |J M K〉 , (14.2.21)

J3 |J M K〉 = M |J M K〉 , and J 3 |J M K〉 = K |J M K〉 ; (14.2.22)

−J ≤M,K ≤ +J, M,K independent. (14.2.23)

Choosing a basis where Iab = diag(Ix, Iy, Iz) is diagonal,

H =
(J x)2

2Ix
+

(J y)2

2Iy
+

(J z)2

2Iz
(14.2.24)

= A ~J 2 +B(J z)2 + C
(
(J x)2 − (J y)2

)
(14.2.25)

A =
1

4Ix
+

1

4Iy
, B =

1

2Iz
− 1

4Ix
− 1

4Iy
, C =

1

4Ix
− 1

4Iy
(14.2.26)
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Additionally,

(J x)2 − (J y)2 =
1

2

(
J +
)2

+
1

2

(
J −
)2

(14.2.27)

J ± ≡ J 1 ± iJ 2. (14.2.28)

Energy estimates From eq. (14.2.24) and the definition that I i ∼ (mass) × (inter-atom
separation distance)2, we may estimate the rotation energy levels of a molecule to go as

E ∼ (mNa
2)−1, (14.2.29)

where mN is the typical mass of the nucleus (since that’s what dominates the mass of individual
atoms) and a is the typical size of the molecule itself.

Problem 14.4. Explain why

~J 2 =
∞∑
J=1

∑
−J≤M,K≤J

J(J + 1) |J M K〉 〈J M K| , (14.2.30)

(J 3)2 =
∞∑
J=1

∑
−J≤M,K≤J

K2 |J M K〉 〈J M K| , (14.2.31)

(J ±)2 =
∞∑
J=1

∑
−J≤M,K≤J

√
J(J + 1)− (K ± 1)(K ± 2)

√
J(J + 1)−K(K ± 1)

× |J M K ± 2〉 〈J M K| . (14.2.32)

Then use these results to diagonalize the Hamiltonian in eq. (14.2.24) for J = 1.

Problem 14.5. Toy model for triatomic molecule Find the rotational energy levels of
the tri-atomic molecular system in Problem (14.2) for a state where ~J2 |J = 1〉 = ~J 2 |J = 1〉 =
2 |J = 1〉.

Wavefunctions See Weinberg for now.

15 Entanglement & Bell’s Inequalities: Spin-Half Sys-

tems; EPR Paradox

One of the key features of quantum mechanics that distinguishes it from its classical counterpart,
is the probabilistic character of its predictions. As we will now explore, the probabilistic character
of quantum mechanics is not mere randomness nor simply correlation – but entanglement. We
shall do so, following Sakurai and Napolitano [3], within the context of spin-half systems, which
involves the angular momentum generators

Si =
σi

2
. (15.0.1)
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In the representation where σ3 is diagonal, the Pauli operators have the matrix representation

σ̂1 ≡
[

0 1
1 0

]
, σ̂2 ≡

[
0 −i
i 0

]
, σ̂3 ≡

[
1 0
0 −1

]
. (15.0.2)

Suppose we begin with a spin-0 system, which then decays into two distinguishable spin-1/2
particles. This means we may write our state as

∣∣0 0; 1
2

1
2

〉
and decompose it into the eigenstates

of the spin operators n̂ · ~S ′ and n̂ · ~S ′′ associated with the two decay products along the unit
radial direction n̂.

n̂(θ, φ) ≡ (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) (15.0.3)

From the rules of addition of angular momentum, we may express the decay through the equation∣∣∣∣0 0;
1

2

1

2

〉
=

1√
2

(|n̂+〉 ⊗ |n̂−〉 − |n̂−〉 ⊗ |n̂+〉) , (15.0.4)

where the first and second slots refers respectively to the first and second decay product. We
will further suppose particle 1 and 2 flies off in opposite directions, so that we may measure
their spins along some chosen directions, once they have become well separated in space. The
possible outcomes of such a thought experiment would illustrate what quantum entanglement
is, and why it is a distinct concept from mere correlations.

Problem 15.1. If |ẑ, 1〉 ≡ |ẑ+〉 and |ẑ, 2〉 ≡ |ẑ−〉 denotes the spin ‘up’ and ‘down’ states along

the ẑ = (0, 0, 1) direction, verify that the eigenstates of n̂ · ~S ≡ n̂iSi are

ξ+
A (n̂) ≡ 〈ẑ,A| n̂+〉 =

(
e−iφ cos (θ/2) , sin (θ/2)

)T
(15.0.5)

and

ξ−A (n̂) ≡ 〈ẑ,A| n̂−〉 =
(
−e−iφ sin (θ/2) , cos (θ/2)

)T
; (15.0.6)

and that they obey the eigen-equation(
n̂ · ~S

)
ξ± = ±1

2
ξ±. (15.0.7)

According to equations (15.0.5) and (15.0.6),

∑
A=±

|ẑ,A〉
[
e−iφ cos (θ/2) −e−iφ sin (θ/2)

sin (θ/2) cos (θ/2)

]A

B

≡
∑
A=±

|ẑ,A〉UA
B = |n̂,B〉 . (15.0.8)

Verify that the inverse relationship is

|ẑ,+〉 = eiφ cos (θ/2) |n̂,+〉 − eiφ sin (θ/2) |n̂,−〉 , (15.0.9)

|ẑ,−〉 = sin (θ/2) |n̂,+〉+ cos (θ/2) |n̂,−〉 . (15.0.10)

We will employ these results in the discussion on entanglement below.
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Measurements Suppose the ~S · ẑ of the first particle is measured, and it is found to
be +1/2. Then we know that the state of the system must be |ẑ,+〉. If, now, the 2nd particle’s

Ŝ · n̂ is measured. According to eq. (15.0.10),

|ẑ,+〉 ⊗ |ẑ,−〉 = sin (θ/2) |ẑ,+〉 ⊗ |n̂,+〉+ cos (θ/2) |ẑ,+〉 ⊗ |n̂,−〉 . (15.0.11)

That means the probability of obtaining +1/2 for the 2nd particle’s ~S · n̂ is sin2(θ/2) and the
probability of −1/2 is cos2(θ/2).

On the other hand, if the first particle’s ~S · ẑ were measured, and it were instead found to
be −1/2. Then according to eq. (15.0.9), the state becomes

|ẑ,−〉 ⊗ |ẑ,+〉 = eiφ cos (θ/2) |ẑ,−〉 ⊗ |n̂,+〉 − eiφ sin (θ/2) |ẑ,−〉 ⊗ |n̂,−〉 . (15.0.12)

If the ~S · ~n of the 2nd particle is then measured, the probability of obtaining +1/2 is cos2(θ/2)
and −1/2 is sin2(θ/2).

Problem 15.2. Suppose we now have

n̂ ≡ (sin θ cosφ, sin θ sinφ, cos θ) , (15.0.13)

n̂′ ≡ (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) . (15.0.14)

Use equations (15.0.9) and (15.0.10) to verify, the singlet state in eq. (15.0.4) can be expressed
as∣∣∣∣0 0;

1

2

1

2

〉
=

1√
2
|n̂+〉 ⊗ |n̂′+〉 eiφ′

(
ei(φ−φ

′) cos (θ/2) sin (θ′/2)− cos (θ′/2) sin (θ/2)
)

+
1√
2
|n̂+〉 ⊗ |n̂′−〉 eiφ′

(
ei(φ−φ

′) cos (θ/2) cos (θ′/2) + sin (θ′/2) sin (θ/2)
)

− 1√
2
|n̂−〉 ⊗ |n̂′+〉 eiφ

(
ei(φ

′−φ) cos (θ/2) cos (θ′/2) + sin (θ′/2) sin (θ/2)
)

+
1√
2
|n̂−〉 ⊗ |n̂′−〉 eiφ

(
ei(φ

′−φ) cos (θ/2) sin (θ′/2)− cos (θ′/2) sin (θ/2)
)
. (15.0.15)

Write down the probabilities P (n̂+, n̂′+), P (n̂+, n̂′−), P (n̂−, n̂′+), and P (n̂−, n̂′−). Since the
coordinate system is arbitrary, and since there are only two vectors in this problem, you may
assume they both lie on the (1, 3) plane; use this observation to show that all these probabilities
depend only on the angle θ between n̂ and n̂′; namely, θ = arccos(n̂ · n̂′).

Bell’s Inequality How does particle 2 ‘know’ what was being measured at particle 1?
Once particle 1’s ẑ · ~S is measured to be +1/2, for instance, then the ẑ · ~S of particle 2 must turn
out to be −1/2 – even if the time difference in the measurements of particles 1 and 2 were shorter
than the light crossing time between them. More generally, equations (15.0.11) and (15.0.12)
indicate the probability of measuring ‘up’ or ’down’ for particle 2’s spin component along some
direction n̂′ depends (instaneously) on how it is oriented relative to the spin direction measured
for particle 1. This apparent instant ’action-at-a-distance’ makes many physicists – including
Einstein himself – very uncomfortable, because it does not sit well with relativity.
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Is it possible for a ’local’ theory to reproduce the predictions of quantum mechanics? Suppose
such a theory is able to produce seemingly probabilistic outcomes of spin, consistent with the
predictions of quantum mechanics. We will remain agnostic about the underlying mechanism
of how it produces outcomes that appears random; but we will assume the outcome is already
fixed once the initial spin−0 particle decays. This is to ensure the theory is a ’local’ one:
for, if the outcome were not already predetermined, it would mean the measurement process
somehow allows for a instantaneous influence-at-a-distance (for e.g., observing ẑ+ for particle
1 immediately causes ẑ− for particle 2). As we shall see, this ‘Einstein locality principle’ leads
us to inequalities (named after its discoverer John Bell) involving the probabilities of obtaining
various results that are in fact violated by quantum mechanics itself. In other words, there are
observable differences between such ‘local’ theories and quantum mechanics.

To see this, we need to consider three distinct detector orientations, which we shall denote
â, b̂, and ĉ. Such local theories, in order to be consistent with quantum mechanics, do not
allow simultaneous measurements of spin along different directions. However, we shall assume
that particle 1 (and 2), when produced, will lead to definite outcomes for the spins measured

along â, b̂, and ĉ. Let’s say out of a total N events, N1 produce particle 1 with the definite
outcome â+, b̂+, ĉ+ and particle 2 with definition outcome â−, b̂−, ĉ−; N2 with â+, b̂+, ĉ− and
â−, b̂−, ĉ+; etc – so that N =

∑
iNi. (Note that the sum of particle 1 and 2’s spin components

must be zero; so we actually really only need to specify particle 1’s outcome.)

No. of events Decay Particle 1 Decay Particle 2

N1 â+, b̂+, ĉ+ â−, b̂−, ĉ−
N2 â+, b̂+, ĉ− â−, b̂−, ĉ+
N3 â+, b̂−, ĉ+ â−, b̂+, ĉ−
N4 â+, b̂−, ĉ− â−, b̂+, ĉ+
N5 â−, b̂+, ĉ+ â+, b̂−, ĉ−
N6 â−, b̂+, ĉ− â+, b̂−, ĉ+
N7 â−, b̂−, ĉ+ â+, b̂+, ĉ−
N8 â−, b̂−, ĉ− â+, b̂+, ĉ+

We may see that the probability of obtaining spin up along â for particle 1; and spin up along
b̂ for particle 2 is

P (â+ b̂+) =
N3 +N4∑8

i=1Ni

≡ N3 +N4

N
; (15.0.16)

while the probability for spin up along â for 1 and spin up along ĉ for 2 is

P (â+ ĉ+) =
N2 +N4

N
; (15.0.17)

and probability for spin up along ĉ for 1 and b̂ for 2 is

P (â+ ĉ+) =
N3 +N7

N
. (15.0.18)
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Since the {Ni} are non-negative, and hence N3 + N4 ≤ N2 + N3 + N4 + N7, this hands us an
example of Bell’s inequalities:

P (â+, b̂+) ≤ P (â+, ĉ+) + P (ĉ+, b̂+). (15.0.19)

See Sakurai [3] eq. (3.10.9), and the more detailed discussion that led up to it.

Problem 15.3. For simplicity, assume â, b̂ and ĉ all lie on the (1, 3) plane; and let θ1 denote the

angle between â and b̂ and θ2 denote the angle between â and ĉ. (Note: θ1 ∈ [0, π] and θ2 ∈ [0, π].)

Compute P (â+, b̂+), P (â+, ĉ+), and P (ĉ+, b̂+) in accordance to quantum mechanics, and figure
out what region on the (θ1, θ2) Bell’s inequality is violated. Hint: See Problem (15.2).

Bonus: Can you find a Bell’s inequality different from that in eq. (15.0.19)? That is, find

probabilities for different set of observables (e.g., (â+, b̂−), (â−, b̂+), (ĉ+, b̂−), etc.) that satisfy
their own inequalities. Does it get violated by quantum mechanics?

Correlation vs Quantum Entanglement Why did we have to examine the case where
there are three distinct detector orientations? Suppose we had only examined the probability
of obtaining P (â + b̂+), P (â + b̂−), P (â− b̂+), and P (â− b̂−). Let us again assume we had a
theory that appears probabilistic but is local in the sense that, once the decay particles 1 and
2 have been produced, their states are fixed. We may then draw a table of outcomes as we did
before; where Ni∈{1,2,3,4} is the number of events that yield the spin results of particles 1 and 2
displayed in the corresponding 2nd and 3rd columns.

No. of events Decay Particle 1 Decay Particle 2 Probability Probability

N1 â+, b̂+ â−, b̂− P (â+, b̂−) P (̂b+, â−)

N2 â+, b̂− â−, b̂+ P (â+, b̂+) P (̂b−, â−)

N3 â−, b̂+ â+, b̂− P (â−, b̂−) P (̂b+, â+)

N4 â−, b̂− â+, b̂+ P (â−, b̂+) P (̂b−, â+)
Table (15).

Because there are only 2 spin orientations considered here, we see that each possible outcome
is associated with a distinct probability. Contrast this with the 3 orientation case above, where
P (â + b̂+), P (â + ĉ+), and P (ĉ + b̂+) involved more than one Ni each. Therefore, in this 2
detector orientations case, if the underlying theory is able to produce the same probabilities
you’ve computed in Problem (15.2), then it would be indistinguishable from quantum mechanics
– as far as this simple system is concerned.

Problem 15.4. Identify the Ni∈{1,2,3,4} in Table (15) with the probabilities computed in Problem
(15.2).

Einstein–Podolsky–Rosen(-Bohm) Paradox & Causality What we have just wit-
nessed is the entanglement between the spin properties of particle 1 and 2, produced upon the
decay of the original spin 0 object.
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16 Path Integrals

Path integrals, sometimes also known as functional integrals, provide an alternate (but equiv-
alent) formulation of quantum mechanics. This was pioneered by Richard Feynman as part of
his PhD thesis.11 Path integration is usually not the most practical way to solve quantum me-
chanical problems, but the perspective it offers is quite distinct from the Schrödinger-Heisenberg
one – one no longer deals with operators and the recovery of classical mechanics follows almost
immediately from the stationary phase approximation. Also, in Quantum Field Theory (QFT),
path integrals become an essential tool when dealing with the quantization of gauge theories.12

As we will demonstrate, the key object is the quantum mechanical amplitude for a particle
to propagate from (t′, ~x′) to (t, ~x):

〈~x |U(t, t′)| ~x′〉 =

∫ ~x

~x′
D~q
∫
D~p exp

[
i

∫ t

t′

(
~p(s) · ~̇q(s)−H (~q(s), ~p(s))

)
ds

]
, (16.0.1)

where U is the unitary time-evolution operator which obeys Schrödinger’s equation

i∂tU(t, t′) = HU(t, t′) (16.0.2)

with the initial condition

U(t = t′) = I. (16.0.3)

The right hand side of eq. (16.0.1) is an integration over all possible trajectories {~q(s)} – hence,
path integration – that begins at (t′, ~x′) and ends at (t, ~x). The integration over ~p is unconstrained.
The ~q is the position coordinate; ~p is its momentum; and H is the Hamiltonian of the dynamics.
That the quantum mechanical amplitude is phrased as the sum over all possible paths, i.e.,
Feynman’s formulation of quantum mechanics, is to be contrasted against the perspective of the
usual Schrödinger’s wave function.

Problem 16.1. If K(t, ~x; t′, ~x′) is the quantum mechanical amplitude (aka path integral) from
(t′, ~x′) to (t, ~x),

K(t, ~x; t′, ~x′) ≡ 〈~x |U(t, t′)| ~x′〉 ; (16.0.4)

explain why

(i∂t −H)G+(t, ~x; t′, ~x′) = iδ(t− t′)δ(D)(~x− ~x′), (16.0.5)

if

G+(t, ~x; t′, ~x′) ≡ Θ(t− t′)K(t, ~x; t′, ~x′). (16.0.6)

Here, Θ(z) = 1 for z > 0 and = 0 for z < 0.

11Norbert Wiener came up with the Euclidean version of the path integral before Feynman.
12Some books dedicated to path integrals are: Feynman and Hibbs [4]; Schulman [5]; and Kleinert [6].
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Lagrangian mechanics As is often the case, the H is quadratic in momentum; for e.g.,

H(~q, ~p) =
~p2

2
+ V (~q). (16.0.7)

13We may ‘complete-the-square’ within the exponent ~p · ~̇q −H,

~p · ~̇q − ~p2

2
− V (~q) = −

(
~p√
2
−
√

2
~̇q

2

)2

+ 2
~̇q2

4
− V (~q) (16.0.8)

= −

(
~p√
2
−
√

2
~̇q

2

)2

+
1

2
~̇q2 − V (~q). (16.0.9)

The integration over ~p can be recognized as an overall multiplicative factor.

〈~x |U(t, t′)| ~x′〉 =

∫ ~x

~x′
D~q
∫
D~p exp

[
i

∫ t

t′

(
~p(s) · ~̇q(s)− ~p2

2
− V (~q)

)
ds

]
(16.0.10)

=

∫ ~x

~x′
D~q
∫
D

{
√

2

(
~p√
2
−
√

2
~̇q

2

)}

× exp

i ∫ t

t′

−( ~p√
2
−
√

2
~̇q

2

)2

+
1

2
~̇q2 − V (~q)

 ds

 (16.0.11)

= N
∫ ~x

~x′
D~q exp

[
i

∫ t

t′

(
1

2
~̇q2(s)− V (~q(s))

)
ds

]
; (16.0.12)

where

N ≡
∫
D
{√

2~p′
}

exp

[
−i
∫ t

t′
~p′2ds

]
. (16.0.13)

In other words, in many cases of interest, the path integral reduces to one governed by the
Lagrangian of the dynamics of the particle.

〈~x |U(t, t′)| ~x′〉 = N
∫ ~x

~x′
D~q exp [iS] , (16.0.14)

S ≡
∫ t

t′
L
(
~q, ~̇q
)

ds. (16.0.15)

In this sense, we have re-discovered Lagrangian mechanics from the Hamiltonian formulation of
quantum mechanics.

13We have deliberately set m = 1, because the same form of the Hamiltonian appears in relativistic QFT where
m does not appear like in the non-relativistic ~p2/(2m).
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16.1 Example: Free Particle in Flat Euclidean Space

We will shortly begin to discuss in more detail what path integration really means. But let us
first tackle the simplest such example: the free particle.

H(~q, ~p) =
~p2

2m
⇔ L(~q, ~̇q) =

m

2
~̇q2 (16.1.1)

It is possible to evaluate the quantum mechanical amplitude directly. SinceH is time-independent
here, 〈

~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 =

∫
dDk

(2π)D

〈
~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣~k〉 〈~k|~x′〉 (16.1.2)

=

∫
dDk

(2π)D
exp

[
−i~k2 t− t′

2m
+ i~k · (~x− ~x′)

]
(16.1.3)

We can then complete the square

t− t′

2m
~k2 − ~k · (~x− ~x′) =

{√
t− t′
2m

~k − 1

2

√
2m

t− t′
(~x− ~x′)

}2

− m

2(t− t′)
(~x− ~x′)2 (16.1.4)

=
t− t′

2m

{
~k − 1

2

2m

t− t′
(~x− ~x′)

}2

− m

2(t− t′)
(~x− ~x′)2. (16.1.5)

And use analytic continuation of∫
RD

dDz exp[−µ~z2] = (π/µ)D/2 (16.1.6)

to deduce, for t− t′ > 0 and m > 0,〈
~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 = exp

[
im

2(t− t′)
(~x− ~x′)2

]
e−i

π
4
D

(
m

2π(t− t′)

)D/2
; (16.1.7)

where the square root is the positive one.

Problem 16.2. Explain why, if ξ > 0,∫
R

dz exp(±iξz2) = e±i
π
4

√
π

ξ
, (16.1.8)

where the square root is the positive one. (Hint: this requires complex analysis and Jordan’s
lemma.) Why does this explain the phase factor e−iπD/4 in eq. (16.1.9)?

Now explain why, for arbitrary t− t′,〈
~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 = exp

[
im

2(t− t′)
(~x− ~x′)2

]
e−i

π
4
D·sgn[t−t′]

(
m

2π|t− t′|

)D/2
. (16.1.9)

The sgn[x] = +1 whenever x > 0; and sgn[x] = −1 whenever x < 0.
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We may also start from the path integral itself.

N
∫ ~x

~x′
D exp

[
i

∫ t

t′

m

2
~̇q2ds

]
(16.1.10)

We will perform a change-of-variables

~q(s) = ~qc(s) + ~ξ(s) (16.1.11)

such that ~qc(s) obeys the ‘classical trajectory’

~̈qc(s) = 0, ~qc(t
′) = ~x′, ~qc(t) = ~x. (16.1.12)

In fact, the solution is

~qc(s) = ~x′ +
s− t′

t− t′
(~x− ~x′). (16.1.13)

Since the ~q(s) in the path integral is defined to go from (t′, ~x′) to (t, ~x), that means the remainder
~ξ has to be subject to the (Dirichlet) boundary conditions

~ξ(t′) = ~0 and ~ξ(t) = ~0. (16.1.14)

Let us focus on the action occurring within the path integral.

S =

∫ t

t′

m

2
~̇q2ds =

∫ t

t′

m

2
(~̇qc + ~̇ξ)2ds (16.1.15)

Using eq. (16.1.12),

S =

∫ t

t′

m

2
~̇q2ds =

∫ t

t′

m

2

((
~x− ~x′

t− t′

)2

+ 2~̇qc · ~̇ξ + ~̇ξ2

)
ds (16.1.16)

=
m

2

(~x− ~x′)2

t− t′
+
m

2

[
2~̇qc · ~ξ

]t
t′

+
m

2

∫ t

t′

(
−2~̈qc · ~ξ + ~̇ξ2

)
ds. (16.1.17)

We have integrated-by-parts the second term within the integral because, according to the bound-
ary conditions in eq. (16.1.14) obeyed by the ~ξ, the surface terms actually vanish. Moreover,

the classical ODE obeyed by ~qc (cf. eq. (16.1.12)) also eliminates the ~̈qc · ~ξ term.

S =
m

2

(~x− ~x′)2

t− t′
+
m

2

∫ t

t′

~̇ξ2ds. (16.1.18)

To sum: the action occurring within the free particle path integral receives two contributions,
one ‘classical’ portion (the first term on the RHS) due to a particle obeying constant acceleration
moving from (t′, ~x′) to (t, ~x); and another ‘quantum’ portion that propagates from (t′,~0) to (t,~0).
Note that since ~qc is a fixed (i.e., classical) trajectory, it is a constant as far as the integration
over paths is concerned:

D~q = D~ξ. (16.1.19)
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At this point, inserting eq. (16.1.18) into the right hand side of eq. (16.0.14), our path integral
is 〈

~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 = N ′ exp

[
im

2

(~x− ~x′)2

t− t′

]
(16.1.20)

N ′ ≡ N
∫ ~0

~0

D~ξ exp

[
i
m

2

∫ t

t′

~̇ξ2ds

]
. (16.1.21)

We may in fact determine N ′ – without directly evaluating the
〈
~0 |U |~0

〉
– up to an overall

multiplicative phase by recalling the transition amplitude may be regarded as the matrix element
of the unitary time evolution operator. In particular,

δ(D) (~x− ~y) =

∫
RD

dD~x′
〈
~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉〈~y ∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 (16.1.22)

=

∫
RD

dD~x′|N ′[t, t′]|2 exp

[
im

2

(~x− ~x′)2 − (~y − ~x′)2

t− t′

]
(16.1.23)

= |N ′[t, t′]|2 exp

[
im

2(t− t′)
(~x2 − ~y2)

] ∫
RD

dD~x′e−i(~x−~y)·~x′ m
t−t′ . (16.1.24)

Recalling the integral representation of the Dirac delta-function, we arrive at

|N ′| =
(

m

2π(t− t′)

)D/2
. (16.1.25)

At this point, we gather from eq. (16.1.20),〈
~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 = eiδ(t,t
′)

(
m

2π(t− t′)

)D/2
exp

[
im

2

(~x− ~x′)2

t− t′

]
(16.1.26)

Comparison between equations (16.1.9) and (16.1.26) allows us to see that the exponent exp(i m
2(t−t′)(~x−

~x′)2) in the former comes entirely from the classical trajectory; and also lets us identify the phase
to be

exp(iδ(t, t′)) = e−i
π
4
D. (16.1.27)

Recall from eq. (16.0.14) that, up to an overall multiplicative factor,∫ ~0

~0

D~ξ exp

[
i
m

2

∫ t

t′

~̇ξ2ds

]
∝
〈
~0 |U(t, t′)|~0

〉
(16.1.28)

=

〈
~0

∣∣∣∣exp

(
−i ~p

2

2m
(t− t′)

)∣∣∣∣~0′〉 . (16.1.29)

This is of course what we did earlier, but now with ~x = ~x′ = ~0. In fact, we may re-write eq.
(16.1.9) as〈

~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 = exp

[
im

2(t− t′)
(~x− ~x′)2

]〈
~0

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣~0〉 ,〈
~0

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣~0〉 = e−i
π
4
D

(
m

2π(t− t′)

)D/2
∝
∫ ~0

~0

D~ξ exp

[
i
m

2

∫ t

t′

~̇ξ2ds

]
. (16.1.30)
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16.2 Path Integrals From Time-Independent Hamiltonians

We now turn to a more systematic derivation of the path integral〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 =

∫ ~x

~x′
D~q
∫
D~p exp

[
i

∫ t

t′
ds
(
~p · ~̇q −H [~p(s), ~q(s)]

)]
. (16.2.1)

For technical simplicity we will assume H is time independent; we will also set the mass of the
particle to unity for technical convenience. The time independence of H means we may write
the quantum transition amplitude in eq. (16.2.1) as〈

~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 = lim
N→∞

〈
~x
∣∣e−iH(δtN+δtN−1+···+δt2+δt1)

∣∣ ~x′〉 , δt1 + · · ·+ δtN ≡ t− t′

= lim
N→∞

∫
RD

dD~qN . . . d
D~q2

〈
~x
∣∣e−iHδtN ∣∣ ~qN〉 〈~qN ∣∣e−iHδtN−1

∣∣ ~qN−1

〉
×
〈
~qN−1

∣∣e−iHδtN−2
∣∣ ~qN−2

〉
. . .
〈
~q3

∣∣e−iHδt2∣∣ ~q2

〉 〈
~q2

∣∣e−iHδt1∣∣ ~x′〉 . (16.2.2)

(All the time intervals are equal δti ≡ δt, but we put a label on them to help us distinguish
between the exponential factors arising from the different time slices.) Now, we will assume that

the position and momentum operators ( ~X and ~P ) within H has been arranged such that〈
~q
∣∣∣H ( ~X, ~P)∣∣∣~k〉 = H

(
~q,~k
)
〈~q|~k

〉
. (16.2.3)

This is not always true, but is certainly so for the common form of the Hamiltonian

H =
1

2
~P 2 + V ( ~X). (16.2.4)

With this assumption, and up to order δt,〈
~qi+1

∣∣e−iHδti∣∣ ~qi〉
=
〈
~qi+1

∣∣∣1− iH ( ~X, ~P) δti +O(δt2)
∣∣∣ ~qi〉 (16.2.5)

=

∫
dD~ki
(2π)D

〈
~qi+1

∣∣∣1− iH ( ~X, ~P) δti +O(δt2)
∣∣∣~ki〉 〈~ki∣∣∣ ~qi〉 (16.2.6)

=

∫
dD~ki
(2π)D

(
1− iH

(
~qi+1, ~ki

)
δti +O(δt2)

)
〈~qi+1|~ki

〉 〈
~ki

∣∣∣ ~qi〉 (16.2.7)

=

∫
dD~ki
(2π)D

exp
(
i~ki (~qi+1 − ~qi)− iH

(
~qi+1, ~ki

)
δti

)
. (16.2.8)

This in turn implies eq. (16.2.2) turns into〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 = lim
N→∞

∫
RD

dD~qN . . . d
D~q2

∫
RD

dD~kN
(2π)D

. . .
dD~k1

(2π)D
(16.2.9)

× ei~kN ·(~x−~qN )−iH(~x,~kN )δtN ei
~kN−1·(~qN−~qN−1)−iH(~qN ,~kN−1)δtN−1

× ei~kN−2·(~qN−1−~qN−2)−iH(~qN−1,~kN−2)δtN−2 . . . ei
~k1·(~q2−~x′)−iH(~q2,~k1)δt1
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14This is what we mean by the path integration measures
∫ ~x
~x′
D~q
∫
D~p in eq. (16.2.1). Notice

there is one more momentum than position integration, because there are no constraints on the
momentum on the final/initial time slices.

Provided the operator ordering assumption in eq. (16.2.3) holds, the quantum
mechanical transition amplitude for a particle to propagate from ~x′ to ~x can be viewed
as the limit of the continuous product over all times the exponential exp(i{~p · ~̇q −
H(~q, ~p)}δt), integrated over all momentum and positions at each time slice – except
the end ~qs are held fixed at ~x′ and ~x.

Stationary Phase Approximation & Semi-Classical Limit For an ordinary integral,
the Riemann–Lebesgue lemma tells us, if

f(x) ≡
∫ b

a

exp(ixϕ(t))dt, (16.2.10)

where a and b are arbitrary real numbers and ϕ(t) is continuously differentiable and is not
constant over a finite region within the interval t ∈ [a, b]. Then

f(x→ +∞) = 0. (16.2.11)

We may understand this heuristically. As x→∞, the exponential oscillates wildly; and we may
in fact break the interval t ∈ [a, b] into small enough segments t ∈ [ti, ti+1] so that ϕ(t) is roughly
a linear function of t in each of them and such that [ti, ti+1] corresponds exactly to one period
of exp(ixϕ(t)) ≈ exp(ix(a+ bt)). Then,∫ ti+1

ti

exp(ix(a+ bt))dt = 0 (16.2.12)

as x→ +∞. (This is also why there is a requirement that ϕ be non-constant everywhere within
t ∈ [a, b]; otherwise the exponential will not oscillate there, and there is no period to integrate
over to produce a zero result.)

General Formula In this limit as x → +∞, we may seek the leading behavior of this
integral by searching for the point t0 such that

ϕ′(t0) = 0. (16.2.13)

For, in that region the ϕ is varies slower than first power in t, and∫ b

a

exp(ixϕ(t))dt =

∫ b

a

exp

(
ix

{
ϕ(t0) +

1

2
ϕ′′(t0)(t− t0)2 + . . .

})
dt (16.2.14)

≈ eixϕ(t0)

∫
R

exp
(
i(x/2)ϕ′′(t0)τ 2

)
dτ. (16.2.15)

14There are subtleties related to this ‘time-slicing’ discretization approach to the path integral – see Kleinert [6]
for more details. For example, the singular 1/r potential occurring within the Coulomb/Hydrogen-like problem
yields more and more singular behavior at higher orders in δt.
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Using the result in eq. (16.1.6) we see that this stationary phase approximation tells us

lim
x→+∞

∫ b

a

exp(ixϕ(t))dt ∼ exp
[
ixϕ(t0) + i

π

4
sgn[ϕ′′(t0)]

]√ 2π

x|ϕ′′(t0)|
, (16.2.16)

15One of the conceptual advantages of using the path integral in eq. (16.0.1) to discuss the
quantum mechanical transition amplitude is the ease in which we may define the classical limit.
A physical process is (semi-)classical when we may associate with it position ~q and momentum
~p, such that the exponent in eq. (16.0.1) has magnitude much greater than unity, in units where
~ ≡ 1: ∫ t

t′

(
~p · ~̇q −H(~q, ~p)

)
ds� 1. (16.2.17)

When this criteria is filled, we may employ the stationary phase approximation to assert that
the path integral is dominated by the stationary point, in the following sense. Let us consider

~x = ~Z + δ ~Z, (16.2.18)

~p = ~Π + δ~Π (16.2.19)

where δ ~Z and δ~Π are to be considered small perturbations relative to ~Z and ~Π respectively.
Then,∫ t

t′

(
~p · ~̇q −H(~q, ~p)

)
ds =

∫ t

t′

{(
~Π · ~̇Z −H(~Z, ~Π)

)
(16.2.20)

+ δ~Π ·
(
~̇Z − ∂H

∂~Π

)
− δ ~Z ·

(
~̇Π +

∂H

∂ ~Z

)
+O

(
δ ~Z2, δ~Π2, δ ~Zδ~Π

)}
ds+

[
δ ~Z · ~Π

]s=t
s=t′

.

We should view this step as the infinite dimensional version of the 1D one in eq. (16.2.14).
Note that the last term is actually zero because of the boundary condition implied by the path
integral in eq. (16.0.1), that ~Z(s = t) = ~x and ~Z(s = t′) = ~x′ – i.e., ~Z is fixed at the end points,

and thus δ ~Z vanishes there. At this point, we make the key observation: the stationary point
occurs when the first order terms proportional to δ~Π and δ ~Z vanish. These yield the classical
Hamilton’s equations:

~̇Z =
∂H

∂~Π
and ~̇Π = −∂H

∂ ~Z
. (16.2.21)

Just as the dominant contribution to the integral in eq. (16.2.14) arises from the neighborhood
where ϕ′(t0) = 0, we see that the quantum mechanical amplitude for a particle to propagate
from ~x′ to ~x is dominated by the classical solution – i.e., obeying Hamilton’s equations – subject
to the boundary conditions ~Z(t) = ~x and ~Z(t′) = ~x′.

15If there is no such t0 ∈ [a, b] such that ϕ′(t0) = 0, then f(x→ +∞) ∼ 1/x; i.e., the integral will decay more
quickly than the case where a stationary point exists.
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Quadratic-in-momentum & Lagrangian formulation The situation where H takes
the form in eq. (16.2.4) occurs frequently. If it holds, we may in fact ‘complete-the-square’ and
obtain the Lagrangian formulation of the path integral〈

~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 = N
∫ ~x

~x′
D~q exp

[
i

∫ t

t′
dsL

(
~q, ~̇q
)]

, (16.2.22)

L
(
~q, ~̇q
)

= ~p(~̇q) · ~̇q −H
(
~q, ~̇q
)
. (16.2.23)

The first step is to recognize, if the Hamilton H does take the form in eq. (16.2.4) (this may

involve setting the mass to unity), then the exponential involving ~ki in eq. (16.2.9) can be
written as

exp

(
i

{
~ki ·

~qi+1 − ~qi
δti

−
~k2
i

2
− V (~qi+1)

}
δti

)
(16.2.24)

= exp

(
i

{
−1

2

(
~ki −

~qi+1 − ~qi
δti

)2

+
(~qi+1 − ~qi)2

2δt2i
− V (~qi+1)

}
δti

)
. (16.2.25)

Integrating over ~ki using eq. (16.1.6), and recognizing (~qi+1 − ~qi)/δti as the finite difference
approximation of the velocity ~̇q(ti), we see that eq. (16.2.9) now reads

〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 = lim
N→∞

∫
RD

dD~qN . . . d
D~q2

N∏
i=1

(
e−i

πD
4

(2πδti)D/2
exp

(
i

{
1

2
~̇qi(ti)

2 − ~V (~qi+1)

}
δti

))
;

~̇qi(ti) ≡
~qi+1 − ~qi
δti

, ~q1 ≡ ~x′, and ~qN+1 ≡ ~x. (16.2.26)

(The square root is the positive one.) The shorthand for this expression is eq. (16.2.22).

Problem 16.3. Free Particle Path Integral Employ the result in eq. (16.2.26) to
evaluate the path integral for the free particle, where V = 0. In other words, recover the result
in eq. (16.1.9). Hint: You may need to re-arrange the exponents; start integrating from ~q2, then
~q3, etc. Also remember all the δti ≡ δt are the same.

Schrödinger’s Equation We may shift the final time t by an infinitesimal dt, and
employ the result in eq. (16.2.26) by treating the final time interval as δtN+1 ≡ dt.〈
~x
∣∣∣e−iH(t+dt−t′)

∣∣∣ ~x′〉
= e−i

π
4
D

√
1

2πdt

D ∫
RD

dD~qN+1 exp

(
i

{
(~x− ~qN+1)2

2dt
− V (~x)dt

})〈
~qN+1

∣∣∣e−iH(t−t′)
∣∣∣ ~x′〉

= e−i
π
4
D

√
1

2πdt

D ∫
RD

dD~q′ exp

(
i
~q′2

2dt

)(
1− iV (~x)dt+O(dt2)

) 〈
~q′ + ~x

∣∣∣e−iH(t−t′)
∣∣∣ ~x′〉

= e−i
π
4
D

√
1

π

D ∫
RD

dD~q′ exp
(
i~q′2
) (

1− iV (~x)dt+O(dt2)
) 〈√

2dt~q′ + ~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉
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= e−i
π
4
D

√
1

π

D ∫
RD

dD~q′ exp
(
−(−i)~q′2

) (
1− iV (~x)dt+O(dt2)

)
×
(

1 +
√

2dt~q′ · ~∇~x +
1

2
(2dt)q′l1q′l2∂l1∂l2 +O(dt3/2)

)〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉
= e−i

π
4
D

√
1

π

D ∫
RD

dD~q′ exp
(
−(−i)~q′2

) (
1 +
√

2dt~q′ · ~∇~x + (dt)q′l1q′l2∂l1∂l2 − iV (~x)dt+O(dt3/2)
)

×
〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 . (16.2.27)

We have ∫
RD

dD~q′ exp
(
i~q′2
)

=
√
π
D
e+iπD

4 . (16.2.28)

Additionally, because ei~q
′2
~q′ is odd in ~q′,∫

RD
dD~q′ exp

(
i~q′2
)
~q′ = 0; (16.2.29)

whereas ∫
RD

dD~q′ exp
(
i~q′2
)
q′aq′b = Aδab; (16.2.30)

where A can be obtained by contracting both sides with respect to δab.∫
RD

dD~q′ exp
(
i~q′2
)
~q′2 = A ·D (16.2.31)

−i∂λ
∫
RD

dD~q′ exp
(
iλ~q′2

)∣∣∣∣
λ=1

= −i∂λ

√
πi

λ

D
∣∣∣∣∣
λ=1

= D · A (16.2.32)

Therefore ∫
RD

dD~q′ exp
(
i~q′2
)
q′aq′b = − i

D

(
−D

2

)√
πi
D
δab =

i

2

√
πi
D
δab. (16.2.33)

Altogether, we now have〈
~x
∣∣∣e−iH(t+dt−t′)

∣∣∣ ~x′〉 =
〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉+ dt∂t

〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉+O(dt2)

=

(
1 + idt

{
1

2
~∇2
~x − V (~x)

}
+O(dt3/2)

)〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 . (16.2.34)

Equating the order dt terms on both sides, we obtain Schrödinger’s equation:

i∂t

〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 =

(
−1

2
~∇2
~x + V (~x)

)〈
~x
∣∣∣e−iH(t−t′)

∣∣∣ ~x′〉 . (16.2.35)
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In the other words, the time-sliced definition of the path integral obeys the Schrödinger’s equa-
tion.

Heisenberg Picture Within the Heisenberg picture, recall that the position operator
~XH(t) is time-dependent (unless it commutes with the Hamiltonian). Therefore, so are its
eigenkets. According to eq. (4.0.23),

|~x, t〉H = U(t, t0)† |~x〉 . (16.2.36)

We see that the path integral in eq. (16.0.1) can be expressed as

H 〈~x, t| ~x′, t′〉H =

∫ ~x

~x′
D~q
∫
D~p exp

[
i

∫ t

t′

(
~p · ~̇q −H(~q, ~p)

)
ds

]
(16.2.37)

because

H 〈~x, t| ~x′, t′〉H =
〈
~x
∣∣U(t, t0)U(t′, t0)†

∣∣ ~x′〉 (16.2.38)

= 〈~x |U(t, t0)U(t0, t
′)| ~x′〉 = 〈~x |U(t, t′)| ~x′〉 . (16.2.39)

We have used the facts (cf. equations (3.0.11) and (3.0.12)) that

U(t1, t2)† = U(t2, t1) (16.2.40)

and

U(t1, t2)U(t2, t3) = U(t1, t3). (16.2.41)

Problem 16.4. What is∫
dD~z

∫ ~x

~z

D~q exp

[
i

∫ t

s

(
1

2
~̇q2 − V (~q)

)
ds

] ∫ ~z

~x′
D~q′ exp

[
i

∫ s

t′

(
1

2
~̇q′2 − V (~q′)

)]
? (16.2.42)

16.2.1 General Properties

Energy Eigenstates If we can perform the path integral exactly, this amounts to solving for
the energy eigenfunctions, as can be seen by inserting the completeness relation

∑
n |En〉〈En| = I:

H 〈~x, t| ~x′, t′〉H = 〈~x |exp[−iH(t− t′)]| ~x′〉 (16.2.43)

=
∑
n

〈~x|En〉 〈En| ~x′〉 e−iEn(t−t′) (16.2.44)

H |En〉 = En |En〉 . (16.2.45)

Partition Function If we require that the particle start and end at the same point ~x =
~x′ ≡ ~z, and then integrate over all space, we obtain the one-particle partition function:∫

dD~z H 〈~z, t| ~z, t′〉H =
∑
n

∫
dD~z 〈En| ~z〉 〈~z|En〉 e−iEn(t−t′)

=
∑
n

e−iEn(t−t′). (16.2.46)
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Green’s function and Determinants Assume for the moment that µ > 0, then consider∫ ∞
0

dτe−µτ 〈~x |exp[−iHτ ]| ~x′〉 =
∑
n

〈~x|En〉 〈En| ~x′〉
(
e−iEnτ−µτ

−iEn − µ

)τ=∞

τ=0

(16.2.47)

=
∑
n

〈~x|En〉 〈En| ~x′〉
µ+ iEn

(16.2.48)

We should be able to analytic continue the µ from real to “almost” purely imaginary µ →
i(µ+ i0+), the 0+ ensuring convergence of the integral. Then we have

GF[~x, ~x′;µ] ≡ i

∫ ∞
0

dτei(µ+i0+)τ 〈~x |exp[−iHτ ]| ~x′〉 (16.2.49)

=
∑
n

〈~x|En〉 〈En| ~x′〉
En − µ− i0+

=

〈
~x

∣∣∣∣ 1

H − µ− i0+

∣∣∣∣ ~x′〉 . (16.2.50)

Notice, when viewed as a complex function of µ, this object has simple poles at the energy
eigenvalues µ = En − i0+. Furthermore, if H is the Hamiltonian in the position rep, we then
have the Green’s function of the operator H − µ:

(H−µ)GF[~x, ~y;µ] =
∑
n

〈~x|En〉 〈En| ~x′〉 (16.2.51)

= δD[~x− ~x′]. (16.2.52)

Note that (En − ω)/(En − ω − i0+) = (En − ω)/(En − ω) + iπδ[En − ω](En − ω) = 1, because
zδ(z) = 0. In addition, if we trace over the positions and recall that the states |En〉 are of unit
norm, ∫

dDxGF[~x, ~x;µ] =
∑
n

1

En − µ− i0+
≡ Tr

[
1

H − µ

]
. (16.2.53)

Operator Insertions If we ‘insert’ an operator OH(s) inside the transition amplitude

H 〈~x, t| ~x′, t′〉H, where t > s > t′, let us show that – provided O is diagonal in the position
representation, namely

H

〈
~z, s

∣∣∣OH( ~X; s)
∣∣∣ ~z′, s〉

H
= O (~z; s) δ(D) (~z − ~z′) , (16.2.54)

where the O on the right hand side takes the same form as that on the left except the position
operator ~X has been replaced with ~z (or ~z′) – we have:

H 〈~x, t |OH(s)| ~x′, t′〉H =

∫ ~x

~x′
D~q
∫
D~p O(s) exp

(
i

∫ t

t′

{
~p · ~̇q −H[~p, ~q]

}
dτ

)
, (16.2.55)

t > s > t′. (16.2.56)

The analog of this object in Quantum Field Theory occurs frequently. Let us insert the
Heisenberg-picture version of the completeness relation, i.e., eq. (4.0.25), on the left and right
of OH.

H 〈~x, t |OH(s)| ~x′, t′〉H
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=

∫
RD

dD~z

∫
RD

dD~z′ H 〈~x, t| ~z, s〉H H 〈~z, s |OH(s)| ~z′, s〉H H 〈~z′, s| ~x′, t′〉H (16.2.57)

=

∫
RD

dD~z

∫
RD

dD~z′ H 〈~x, t| ~z, s〉H OH(~z; s)δ(D)(~z − ~z′) H 〈~z′, s| ~x′, t′〉H (16.2.58)

=

∫
RD

dD~z H 〈~x, t| ~z, s〉H OH(~z; s) H 〈~z, s| ~x′, t′〉H . (16.2.59)

If we now exploit eq. (16.2.9),

H 〈~x, t |OH(s)| ~x′, t′〉H (16.2.60)

= lim
N→∞

∫
RD

dD~qN . . . d
D~q2

∫
RD

dD~kN
(2π)D

. . .
dD~k1

(2π)D

× lim
N ′→∞

∫
RD

dD~q′N ′ . . . d
D~q′2

∫
RD

dD~k′N ′

(2π)D
. . .

dD~k′1
(2π)D

×
∫
RD

dD~z O(~z; s)

× ei~kN ·(~x−~qN )−iH(~x,~kN )δtN ei
~kN−1·(~qN−~qN−1)−iH(~qN ,~kN−1)δtN−1

× ei~kN−2·(~qN−1−~qN−2)−iH(~qN−1,~kN−2)δtN−2 . . . ei
~k1·(~q2−~z)−iH(~q2,~k1)δt1

× ei~k′N′ ·(~z′−~q′N′ )−iH(~z′,~k′
N′ )δt

′
N′ei

~k′
N′−1

·(~q′
N′−~q

′
N′−1

)−iH(~q′
N′ ,

~k′
N′−1

)δt′
N′−1

× ei~k
′
N′−2

·(~q′
N′−1

−~q′
N′−2

)−iH(~q′
N′−1

,~k′
N′−2

)δt′
N′−2 . . . ei

~k′1·(~q′2−~x′)−iH(~q′2,
~k′1)δt′1

t− s ≡ δtN + · · ·+ δt1, s− t′ ≡ δt′N ′ + · · ·+ δt′1.

If O were simply the identity, we’d recover eq. (16.2.9). But with O present this merely means
we’d have to, at the s-time-slice, also integrate over it. That is, eq. (16.2.60) is the continuum
limit of eq. (16.2.60).

Energy Eigenstates Expectation Values in Heisenberg Picture We may express
the expectation value of some operator O with respect to an energy eigenket state in terms of
path integrals. We will continue to assume eq. (16.2.54) holds; i.e., O is diagonal in the position
representation. Specifically, keeping in mind eq. (16.2.55),

〈E |O|E〉 =

∫
RD dD~x

∫
RD dD~x′ 〈E| ~x〉 H 〈~x, t1 |OH(t)| ~x′, t2〉H 〈~x′|E〉

H 〈E, t1|E, t2〉H
, (16.2.61)

H 〈E, t1|E, t2〉H =

∫
RD

dD~x

∫
RD

dD~x′ 〈E| ~x〉 H 〈~x, t1| ~x′, t2〉H 〈~x
′|E〉 ; (16.2.62)

where t1,2 are arbitrary (as long as they are not equal to t) and the energy eigen-functions 〈~x|E〉
are written in the Schrödinger picture. The situation in eq. (16.2.61) occurs frequently within
QFT, particularly when |E〉 refers to the vacuum state.

Using eq. (4.0.28), we begin with the numerator on the right hand side of eq. (16.2.61).∫
RD

dD~x

∫
RD

dD~x′ 〈E| ~x〉 H 〈~x, t1 |OH(t)| ~x′, t2〉H 〈~x
′|E〉 (16.2.63)

=

∫
RD

dD~x

∫
RD

dD~x′ H 〈E, t1| ~x, t1〉 H H 〈~x, t1 |OH(t)| ~x′, t2〉H H 〈~x′, t2|E, t2〉 H (16.2.64)
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Next we employ the Heisenberg-picture completeness relation in eq. (4.0.25).∫
RD

dD~x

∫
RD

dD~x′ 〈E| ~x〉 H 〈~x, t1 |OH(t)| ~x′, t2〉H 〈~x
′|E〉 = H 〈E, t1 |OH(t)|E, t2〉 H (16.2.65)

Now, let us recall equations (4.0.9) and (4.0.23) to return to the Schrödinger picture.∫
RD

dD~x

∫
RD

dD~x′ 〈E| ~x〉 H 〈~x, t1 |OH(t)| ~x′, t2〉H 〈~x
′|E〉 (16.2.66)

= 〈E| e−iE(t1−t0)eiE(t−t0)Oe−iE(t−t0)eiE(t2−t0) |E〉 (16.2.67)

= e−iE(t1−t2) 〈E|O |E〉 = 〈E| e−iE(t1−t0)eiE(t2−t0) |E〉 〈E|O |E〉 (16.2.68)

= H 〈E, t1|E, t2〉 H · 〈E|O |E〉 . (16.2.69)

Dividing both sides by H 〈E, t1|E, t2〉 H, we arrive at eq. (16.2.61). Moreover, when we set
O = I on both sides, we have also recover the representation in eq. (16.2.62).

For time-independentH, the energy eigenstate expectation value of some operator
O in the Schrödinger picture can be expressed as a ratio of path integrals integrated
against the energy-eigenfunctions at the initial and final times – with O inserted in
the numerator path integral.

Problem 16.5. Time-Ordered Products from Path Integrals Show that operator
insertions within the path integral, namely∫ ~x

~x′
D~q
∫
D~p exp

(
i

∫ t

t′

{
~p · ~̇q −H[~q, ~p]

}
ds

)
A(s)B(s′)C(s′′) . . . (16.2.70)

= H 〈~x, t |T {AH(s)BH(s′)CH(s′′) . . . }| ~x′, t′〉H ; (16.2.71)

where on the right hand side AH, BH, CH, . . . are arbitrary Heisenberg-picture operators diag-
onal in the position representation; and A, B, C, . . . on the left-hand-side correspond to their
complex-number counterparts; and t > (s, s′, s′′, . . . ) > t′. Whereas, T means the operators
within the curly brackets are arranged such that the ones with later times stand on the right.
For instance, if s2 > s1, then

T {AH(s1)BH(s2)} = BH(s2)AH(s1); (16.2.72)

or, if s′′ > s > s′, then

T {AH(s)BH(s′)CH(s′′)} = CH(s′′)AH(s)BH(s′). (16.2.73)

Hint: Insert completeness relations using the position eigenkets in the Heisenberg-picture. Such
“correlation functions” are central objects in QFT; for instance, through the Lehmann-Symanzik-
Zimmermann reduction, one may obtain the quantum scattering amplitude of n particles.
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16.2.2 Free Particle

We have already worked out the free particle path integral, so let us simply summarize the
various representations here. From equations (16.1.3) and (16.1.9):〈

~x

∣∣∣∣exp

[
−i ~p

2

2m
(t− t′)

]∣∣∣∣ ~x′〉 =

∫ ~x

~x′
D~q
∫
D~p exp

[
i

∫ t

t′

(
~p · ~̇q − ~p2

2

)
ds

]
(16.2.74)

= N
∫ ~x

~x′
D~q exp

[
i

∫ t

t′

m

2
~̇q2ds

]
(16.2.75)

=

∫
RD

dD~k

(2π)D
exp

[
i~k · (~x− ~x′)− i

~k2

2m
(t− t′)

]
(16.2.76)

= exp

[
im

2(t− t′)
(~x− ~x′)2

]
e−i

πD
4

sgn[t−t′]
(

m

2π|t− t′|

)D
2

. (16.2.77)

16.2.3 Simple Harmonic Oscillator

In this section we are going to compute the path integral of the simple harmonic oscillator.
Because the SHO Hamiltonian takes the form in eq. (16.2.4), with the potential being V (~q) =
(ω2/2)~q2, we may thus start with the Lagrangian formulation in eq. (16.2.22):

KJ [t, t′; ~x, ~x′] ≡
∫ ~x

~x′
D~q exp [iS] ; (16.2.78)

where

S ≡
∫ t

t′
Lds; (16.2.79)

L ≡ 1

2

(
~̇q[s]2 − ω2~q[s]2

)
. (16.2.80)

The strategy is as follows. Like the free particle case, we split the ~q into a classical ~qc and
fluctuating piece ~ξ, so that

~q ≡ ~qc + ~ξ, (16.2.81)

D~q = D~ξ; (16.2.82)

with the boundary conditions

~qc[t
′] = ~x′, ~qc[t] = ~x, ~ξ[t′] = ~ξ[t] = ~0. (16.2.83)

The Lagrangian now transforms into

L = L0 + ~̇qc · ~̇ξ − ω2~qc · ~ξ +
1

2

(
~̇ξ2 − ω2~ξ2

)
, (16.2.84)

L0 ≡
1

2

(
~̇q2
c − ω2~q2

c

)
. (16.2.85)
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The action now reads

S = S0 +
[
~ξ · ~̇qc

]t
t′

+

∫ t

t′
ds

{
− ~ξ ·

((
d2

dt2
+ ω2

)
~qc

)
+

1

2

(
~̇ξ2 − ω2~ξ2

)}
,

S0 ≡
1

2

∫ t

t′

(
~̇q2
c − ω2~q2

c

)
ds. (16.2.86)

We may demand that (
d2

dt2
+ ω2

)
~qc = ~0. (16.2.87)

Problem 16.6. With the boundary conditions in eq. (16.2.83), verify that the solution to the
classical trajectory is

~qc[s] =
~x sin [ω(s− t′)] + ~x′ sin [ω(t− s)]

sin [ω(t− t′)]
; (16.2.88)

whenever the time elapsed is not a half-period, namely

ω(t− t′) 6= `π (for integer `). (16.2.89)

Next, show that the action now reads

S = Sc +

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)
; (16.2.90)

where the classical contribution to the action is

Sc[~qc] =
ω

2 sin [ω(t− t′)]
(
(~x2 + ~x′2) cos [ω(t− t′)]− 2~x · ~x′

)
. (16.2.91)

Now, as long as t− t′ is not a half-period, eq. (16.2.89) is valid, our path integral now reads

K[t, t′; ~x, ~x′] = exp

[
iω

2 sin [ω(t− t′)]
(
(~x2 + ~x′2) cos [ω(t− t′)]− 2~x · ~x′

)]
×
∫ ~0

~0

D~ξ exp

[
i

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)]
. (16.2.92)

Mode Sums & Functional Determinants We may now decompose ~ξ into a superposition
of the complete set of eigen-functions of (d/ds)2 + ω2, subject to the boundary condition in eq.

(16.2.83). Specifically, we may define the inner product of ~ξ1,2(s) to be〈
~ξ1

∣∣∣ ~ξ2

〉
≡
∫ t

t′

~ξ1 · ~ξ2ds, (16.2.93)

~ξ1,2(s = t′) = ~0 = ~ξ1,2(s = t). (16.2.94)
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In particular, the differential operator (d/ds)2 + ω2 is Hermitian∫ t

t′

(
d2

ds2
+ ω2

)
~ξ1(s) · ~ξ2ds =

∫ t

t′

~ξ1(s) ·
(

d2

ds2
+ ω2

)
~ξ2ds (16.2.95)

because the boundary terms vanishes by eq. (16.2.93).
Moreover, the orthonormal eigenfunctions are

u`[s] =

√
2

t− t′
sin

[
`π

t− t′
(s− t′)

]
, (16.2.96)∫ t

t′
um · unds = δmn, (16.2.97)(

d2

ds2
+ ω2

)
u` = −λ`u`, λ` ≡ ω2

{
`2

(
π

ω(t− t′)

)2

− 1

}
. (16.2.98)

Since the eigen-functions of (d/ds)2 + ω2 must be complete,

~ξ =
∞∑
`=1

~Z`u`[s]. (16.2.99)

Note that u`[t] = u`[t
′] = 0; and

(16.2.100)

Therefore,

1

2

∫ t

t′
ds
(
~̇ξ2 − ω2~ξ2

)
= −1

2

∞∑
m,n=1

~Zm · ~Znδmn (−λn) =
1

2

∞∑
n=1

~Z2
nλn; (16.2.101)

and

exp

[
i

2

∫ t

t′

(
~̇ξ2 − ω2~ξ2

)
ds

]
=

+∞∏
`=1

exp

[
i

2
λ` ~Z

2
`

]
. (16.2.102)

We may now interpret, using eq. (16.2.98),∫ ~0

~0

D~ξ exp

[
i

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)]
= N

+∞∏
`=1

∫
RD

dD ~Z` exp

[
i

2
λ` ~Z

2
`

]

= N ′
+∞∏
`=1

e
iDπ
4

sgn[λ`]

∣∣∣∣∣ω2 −
(

`π

t− t′

)2
∣∣∣∣∣
−D

2

(16.2.103)

Upon comparison with eq. (16.2.98), notice this ~0 → ~0 transition amplitude is proportional to
the −(D/2)th power of the product of the eigenvalues of the SHO operator (d/ds)2 +ω2 subject

to Dirichlet boundary conditions; this in turn is why the
〈
~0 |U |~0

〉
is often dubbed a functional
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determinant, since it is directly related to the determinant of the differential operator associated
with the dynamics at hand.

det

(
d2

ds2
+ ω2

)
≡
∞∏
`=1

(
ω2 −

(
`π

t− t′

)2
)

(16.2.104)

∫ ~0

~0

D~ξ exp

[
i

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)]
∝
{

det

(
d2

ds2
+ ω2

)}−D
2

. (16.2.105)

At this point, note that the pre-factors N and N ′ should not depend on ω, since it arises from
the ambiguity of the integration measure D~ξ →

∏
` dD ~Z`. We proceed as follows.

∫ ~0

~0

D~ξ exp

[
i

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)]
= N ′

∞∏
`′=1

(∣∣∣∣ `′πt− t′

∣∣∣∣−D e iDπ4 sgn[λ`′ ]

)
+∞∏
`=1

∣∣∣∣∣1−
(
ω(t− t′)

`π

)2
∣∣∣∣∣
−D

2

= N2[t− t′]
∣∣∣∣ ω(t− t′)
sin[ω(t− t′)]

∣∣∣∣D2 ,
N2[t− t′] ≡ N ′

∞∏
`′=1

(∣∣∣∣ `′πt− t′

∣∣∣∣−D e iDπ4 sgn[λ`′ ]

)
. (16.2.106)

We have utilized

sin z

z
=
∞∏
`=1

(
1− z2

(`π)2

)
. (16.2.107)

Let us observe that the sign of the eigenvalues in eq. (16.2.98),

λ` ≡ ω2

(
π

ω(t− t′)

)2
{
`2 −

(
ω(t− t′)

π

)2
}
, (16.2.108)

is controlled by the difference between the integer ` and ω(t − t′)/π (for t − t′ > 0). (Note
that, within classical dynamics, a full period t− t′ ≡ T of motion is determined by the equation
ωT = 2π; so t − t′ = π/ω is a half period.) When 0 < ω(t − t′)/π < 1, i.e., within the first
half-period, all the eigenvalues labeled by {λ`|` = 1, 2, 3, . . . } are positive and

N2[t− t′] ≡ N ′
∞∏
`′=1

(∣∣∣∣ `′πt− t′

∣∣∣∣−D e iDπ4
)
. (16.2.109)

It is important to note that N2 depends on time but not on ω. This means we may determine
its form by taking the ω → 0 limit,16 since it needs to recover the free particle case〈

~x
∣∣∣e−i(t−t′)~p2/2∣∣∣ ~x′〉 =

∫
RD

dD~k

(2π)D
ei
~k·(~x−~x′)e−i(t−t

′)~k2/2 (16.2.110)

16This is also why it is important to assume 0 < ω(t− t′) < π because, as we shall see, the other time intervals
`π < ω(t− t′) < (`+ 1)π (for ` = 1, 2, 3, . . . ) are not continuously connected to the free particle ω = 0 case.
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Denoting ~x− ~x′ ≡ ~R and t− t′ ≡ T , we first complete the square.

−T
2

(~k − ~R

T

)2

− R2

T 2

 = −T
2

(
~k2 − 2

T
~k · ~R

)
(16.2.111)

For T > 0, 〈
~x
∣∣∣e−i(t−t′)~p2/2∣∣∣ ~x′〉 = e

i
2
R2

T

∫
RD

dD~k

(2π)D
e−i(t−t

′)~k2/2

= e
i
2
R2

T

(
e−i

π
4

2π

√
2π

|t− t′|

)D

. (16.2.112)

When ~x = ~x′ = ~0,

〈
~0
∣∣∣e−i(t−t′)~p2/2∣∣∣~0〉 =

(
e−i

π
4√

2π|t− t′|

)D

. (16.2.113)

and therefore, for 0 < ω(t− t′) < π, we have the result∫ ~0

~0

D~ξ exp

[
i

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)]
= e−iD

π
4

∣∣∣∣ 1

2π(t− t′)

∣∣∣∣D2 ∣∣∣∣ ω(t− t′)
sin[ω(t− t′)]

∣∣∣∣D2 (16.2.114)

= e−iD
π
4

∣∣∣∣ ω

2π sin[ω(t− t′)]

∣∣∣∣D2 . (16.2.115)

When the elapsed time t−t′ lies within the second half-period, 1 < ω(t−t′)/π < 2, then the first
eigenvalue λ1 in eq. (16.2.108) becomes negative whereas the rest of the λ`>1 remain positive.
The overall amplitude N2 multiplying the SHO path integral in eq. (16.2.106) then reads

N2[t− t′] = N ′ ·

(∣∣∣∣ π

t− t′

∣∣∣∣−D e− iDπ4
)
·
∞∏
`′=2

(∣∣∣∣ `′πt− t′

∣∣∣∣−D e iDπ4
)

(16.2.116)

= N ′
∞∏
`′=1

(∣∣∣∣ `′πt− t′

∣∣∣∣−D e iDπ4
)
e−i

π
2
D. (16.2.117)

The phase in the first factor has become e−i(πD)/4 = e+i(πD)/4e−i(πD)/2; and since N2 multiplies
the path integral, we see the quantum mechanical transition amplitude would therefore jump
by a phase e−i(πD/2) when the time elapsed t − t′ proceeds from the first to second half-period.
In the third half-period, 2 < ω(t − t′)/π < 3, eq. (16.2.108) indicates both λ1 and λ2 are now
negative and

N2[t− t′] = N ′
∞∏
`′=1

(∣∣∣∣ `′πt− t′

∣∣∣∣−D e iDπ4
)
e−i2·

π
2
D. (16.2.118)
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More generally, as t − t′ transitions from the `th half-period to the (` + 1)th one, the λ`+1

eigenvalue will flip sign from + to −, which in turn will cause a jump in the phase multiplying
the path integral by e−i(πD/2). To sum, when

0 < ` <
ω(t− t′)

π
< `+ 1, (16.2.119)

the ~0 to ~0 path integral is∫ ~0

~0

D~ξ exp

[
i

∫ t

t′
ds

(
1

2
~̇ξ2 − ω2

2
~ξ2

)]
= e−i`

πD
2 e−iD

π
4

∣∣∣∣ ω

2π sin[ω(t− t′)]

∣∣∣∣D2 ; (16.2.120)

and eq. (16.2.92) becomes

K[t, t′; ~x, ~x′] = exp

[
iω

2 sin [ω(t− t′)]
(
(~x2 + ~x′2) cos [ω(t− t′)]− 2~x · ~x′

)]
× e−i`

πD
2 e−iD

π
4

∣∣∣∣ ω

2π sin[ω(t− t′)]

∣∣∣∣D2 . (16.2.121)

Problem 16.7. SHO Path Integral & Classical Dynamics Recalling eq. (16.2.91), we
may write eq. (16.2.121) as∫ ~x

~x′
D~q exp

[
i

2

∫ t

t′

(
~̇q2 − ω2~q2

)
ds

]
= e−i`

πD
2 e−iD

π
4

∣∣∣∣ ω

2π sin[ω(t− t′)]

∣∣∣∣D2 eiSc[~qc], (16.2.122)

` <
ω(t− t′)

π
< `+ 1. (16.2.123)

Show that, up to overall multiplicative phase factors, this result may be re-expressed as

H 〈~x, t| ~x′, t′〉H =

∫ ~x

~x′
D~q exp

[
i

2

∫ t

t′

(
~̇q2 − ω2~q2

)
ds

]
=

(
det

∂2Sc
∂xa∂x′b

) 1
2

eiSc[~qc]. (16.2.124)

In other words – keeping in mind eq. (16.2.120) – the functional determinant
〈
~0 |U |~0

〉
is also

directly related to the classical action differentiated with respect to the starting and ending
points of motion. Eq. (16.2.124) is not a special feature of SHO dynamics, but a rather generic
feature of (the JWKB limit of) path integrals. The jump in the phase factors is also generic: it
occurs whenever one of the eigenvalues of the differential operator encoded in S flips sign.

Problem 16.8. One-particle Partition Function of SHO Recall that the energy levels
of the SHO are given by

En =

(
n+

1

2

)
ω (16.2.125)

in D = 1 dimension. First show that
+∞∑
`=0

e−i(t−t
′)E` = (2i sin (ω(t− t′)/2))

−1
. (16.2.126)

Then demonstrate that this is consistent with eq. (16.2.46), that the ‘trace’ of the path integral
yields the one-particle partition function. Assume t− t′ is not a multiple of a half-period.
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Half-Periods & Parity When ω(t− t′) = `π, we see the solution to path integral faces
apparent infinities from all the occurrences of 1/ sin[ω(t− t′)] in eq. (16.2.121). This difficultly
can in turn be traced to the fact that the classical solution to the SHO – with boundary conditions
fixed – is no longer well defined. To see this, suppose ~̇x0 and ~x0 denote respectively the initial
velocity and position of the SHO at s = t′; then

~qc[s] =
~̇x0

ω
sin [ω(s− t′)] + ~x0 cos [ω(s− t′)] ,

(
d2

ds2
+ ω2

)
~qc[s] = 0. (16.2.127)

At half-periods ω(s− t′) = `π, the dependence on the initial velocity drops out and

~qh[ω(s− t′) = `π] = ~x0(−)`. (16.2.128)

In other words, it is not possible to demand that, over the time duration t − t′ = `π/ω, a SHO
particle moves from ~x0 to some other ~x 6= (−)`~x0.

Let us see this from the path integral perspective. As we shall see, this result is intimately
related to parity invariance of the SHO Hamiltonian. To begin, let us define in the Schrödinger
picture

P |~x〉 ≡ |−~x〉 . (16.2.129)

Note that, if ~X is the position operator, this is equivalent to

P−1 ~XP = − ~X. (16.2.130)

Also observe that

P 2 |~x〉 = P |−~x〉 = |~x〉 ⇒ P−1 = P. (16.2.131)

We may readily construct the symmetric and antisymmetric eigenstates of P as

|~x; +〉 ≡ |~x〉+ |−~x〉√
2

and |~x;−〉 ≡ |~x〉 − |−~x〉√
2

. (16.2.132)

How does the parity operator acts on the momentum eigenstates {
∣∣∣~k〉}? We consider〈

~k |P | ~x
〉

=
〈
~k
∣∣∣− ~x〉 = χe−i

~k·(−~x) = χe−i(−
~k)·~x =

〈
−~k
∣∣∣ ~x〉 . (16.2.133)

Since this is true for any |~x〉, we must have

P
∣∣∣~k〉 =

∣∣∣−~k〉 ; (16.2.134)

and for momentum operator ~p

P~pP = −~p. (16.2.135)
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Since the position and momentum operators transform in the same manner, and since the rais-
ing/lowering operators are formed from their linear combinations, this implies the ~a and ~a† in
equations (12.3.10) and (12.3.11) also transform as

P~aP = −~a, P~a†P = −~a†. (16.2.136)

We may use the fact that the ground state |E0〉 is even under parity17 to see that each higher
state would alternate between odd and even under parity. For instance, if (ai`)† is the raising
operator in the `th spatial direction,

P (ai1)† . . . (ain)† |E0〉 = P (ai1)†P · P (ai2)†P . . . P (ain−1)†P · P (ain)†P 2 |E0〉
= (−)n(ai1)† . . . (ain)†P |E0〉 = (−)n(ai1)† . . . (ain)† |E0〉 . (16.2.137)

For ω(t− t′) = `π, we may now analyze our path integral as follows

K[ω(t− t′) = `π; ~x, ~x′] = 〈~x| exp

[
−i`π

ω
HSHO

]
|~x′〉 ,

=
∞∑

n1,...,nD=0

〈~x|E~n〉 〈E~n| ~x′〉 exp

[
−i`π

(
n1 + · · ·+ nD +

D

2

)]

=
1

iD·`

∞∑
n1,...,nD=0

〈~x|E~n〉 〈E~n| ~x′〉 (−)(n1+···+nD)·`

=
1

iD·`

∞∑
n1,...,nD=0

〈~x|E~n〉
〈
E~n
∣∣P `
∣∣ ~x′〉

=
1

iD·`

∞∑
n1,...,nD=0

〈~x|E~n〉 〈E~n| (−)`~x′
〉
. (16.2.138)

But the summation is now the completeness relation:

K[ω(t− t′) = `π; ~x, ~x′] =
1

iD·`
δ(D)

[
~x− (−)`~x′

]
, (16.2.139)

where D is the number of space dimensions.
Summary The transition amplitude for the SHO system

〈~x |exp [−i(t− t′)HSHO]| ~x′〉 =

∫ ~x

~x′
D~q exp

[
i

2

∫ t

t′

(
~̇q2 − ω2~q2

)
ds

]
(16.2.140)

is given by, for the first half-period,

〈~x |exp [−i(t− t′)HSHO]| ~x′〉 (16.2.141)

= e−iD
π
4

∣∣∣∣ ω

2π sin[ω(t− t′)]

∣∣∣∣D2 exp

[
iω

2 sin [ω(t− t′)]
(
(~x2 + ~x′2) cos [ω(t− t′)]− 2~x · ~x′

)]
≡ K0[t, t′; ~x, ~x′], 0 < t− t′ < π

ω
; (16.2.142)

17Up to overall numerical/normalization constants, 〈~x|E0〉 ∝ exp[−ω~x2/2].
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and for subsequent half-periods,

〈~x |exp [−i(t− t′)HSHO]| ~x′〉 =
1

iD
K0[t, t′; ~x, ~x′],

π

ω
< t− t′ < 2π

ω
, (16.2.143)

=
1

i2D
K0[t, t′; ~x, ~x′],

2π

ω
< t− t′ < 3π

ω
, (16.2.144)

=
1

i3D
K0[t, t′; ~x, ~x′],

3π

ω
< t− t′ < 4π

ω
, (16.2.145)

. . . . . . (16.2.146)

18When the time elapsed is exactly a multiple of a half-period, t − t′ = `π/ω and integer
` = 1, 2, 3, . . . ,

〈~x |exp [−i(t− t′)HSHO]| ~x′〉 =
1

iD·`
δ(D)

[
~x− (−)`~x′

]
. (16.2.147)

16.3 SHO with Time Dependent Frequency

In this section we will determine the path integral, up to overall phase factors, of the SHO but
now allowing ω to depend on time.

Retarded Green’s Function In this section, we wish to study the properties of the
retarded Green’s function of the simple harmonic oscillator with a time dependent frequency,
namely: (

d2

dt2
+ ω[t]2

)
G[t, t′] =

(
d2

dt′2
+ ω[t′]2

)
G[t, t′] = δ[t− t′]; (16.3.1)

with the constraint

G[t < t′] = 0. (16.3.2)

With eq. (16.3.2), we may write

G[t, t′] = Θ[t− t′]G[t, t′]. (16.3.3)

ODEs, Initial Value Problem We shall now argue that G is the homogeneous solution(
d2

dt2
+ ω[t]2

)
G[t, t′] =

(
d2

dt′2
+ ω[t′]2

)
G[t, t′] = 0 (16.3.4)

with the initial values

∂tG[t, t′] = −∂t′G[t, t′] = 1, G[t = t′] = 0. (16.3.5)

Inserting eq. (16.3.3) into eq. (16.3.1), the ODE with respect to t reads:

δ′[t− t′]G[t, t′] + 2δ[t− t′]∂tG[t, t′] + Θ[t− t′]
(
∂2
t + ω2

)
G[t, t′] = 0. (16.3.6)

18These phase jumps are related to the Maslov-Morse indices; see [7] for a pedagogical discussion.
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Assuming G is smooth enough so that we may Taylor expand

δ′[t− t′]G[t, t′] = δ′[t− t′]
(
G[t = t′] + (t− t′)∂tG[t = t′] +O

[
(t− t′)2

])
; (16.3.7)

followed by using the distributional identity zδ′[z] = −δ[z], we gather

δ′[t− t′]G[t = t′] + δ[t− t′]∂tG[t = t′] + Θ[t− t′]
(
∂2
t + ω2

)
G[t, t′] = 0. (16.3.8)

Therefore, to ensure the vanishing of the δ′ and Θ terms, we require G[t = t′] = (∂2
t + ω2)G = 0;

while to ensure that we are left with the desired δ[t−t′] on the RHS, we must have ∂tG[t = t′] = 1.
A similar calculation, but now with respect to t′, reveals

δ′[t− t′]G[t, t′]− 2δ[t− t′]∂t′G[t, t′] + Θ[t− t′]
(
∂2
t′ + ω2

)
G[t, t′] = 0 (16.3.9)

δ′[t− t′]G[t = t′]− δ[t− t′]∂t′G[t, t′] + Θ[t− t′]
(
∂2
t′ + ω2

)
G[t, t′] = 0. (16.3.10)

This leads us to conclude that ∂t′G[t = t′] = −1 and (∂2
t′ + ω2)G = 0.

Wronski & Solution The unique solution to equations (16.3.4) and (16.3.5) is

G[t, t′] = −Z1[t]Z2[t′]− Z2[t]Z1[t′]

Wr[Z1, Z2]
, (16.3.11)

Wr[Z1, Z2] ≡ Z1Ż2 − Z2Ż1; (16.3.12)

where Z1 and Z2 are homogeneous solutions to the ODE, namely(
d2

dt2
+ ω2

)
Z1,2 = 0. (16.3.13)

Note that, under any invertible transformation

ZI[t] = M J
I YJ[t], (16.3.14)

detM J
I 6= 0; (16.3.15)

where {Y1, Y2} are homogeneous solutions; the solution to G remains invariant

G[t, t′] = −Z1[t]Z2[t′]− Z2[t]Z1[t′]

Wr[Z1, Z2]
= −Y1[t]Y2[t′]− Y2[t]Y1[t′]

Wr[Y1, Y2]
. (16.3.16)

From the Wronskian-based solution, we may see immediately that G is antisymmetric:

G[t, t′] = −G[t′, t] (16.3.17)

and therefore

G[t = t′] = 0, ∂t∂t′G[t = t′] = 0. (16.3.18)

That G satisfies the homogeneous solution follows from the fact that Z1,2 are homogeneous
solutions. Note that the Wronskian Wr[Z1, Z2] is time independent because there are no single
derivative terms in the ODE; and thus, one may evaluate the Wronskian at any time.

d

dt
Wr[Z1, Z2] = Ż1Ż2 − Ż2Ż1 + Z1Z̈2 − Z̈1Z2 (16.3.19)

= Z1(−ω2)Z2 − (−ω2)Z1Z2 = 0. (16.3.20)
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We may further check that

d

dt
G[t, t′] = −Ż1[t]Z2[t′]− Ż2[t]Z1[t′]

Z1[t]Ż2[t]− Z2[t]Ż1[t]
(16.3.21)

t→t′
= 1; (16.3.22)

and likewise

d

dt′
G[t, t′] = −Z1[t]Ż2[t′]− Z2[t]Ż1[t′]

Z1[t]Ż2[t]− Z2[t]Ż1[t]
(16.3.23)

t→t′
= −1. (16.3.24)

Kirchhoff Representation With the Green’s function at hand, we may use it to solve the
initial value problem

Z[t = t′] = x′, Ż[t = t′] = ẋ′; (16.3.25)

through the formula

Z[t] = G[t, t′]ẋ′ − ∂t′G[t, t′]x′. (16.3.26)

This carries over to the relationship between the Heisenberg picture position operator ~X[t] and

its ‘initial’ value (i.e., its Schrödinger picture counterparts) ~X[t′] and ~p[t′] = ~̇X[t′]:

~X[t] = G[t, t′]~p[t′]− ∂t′G[t, t′] ~X[t′]. (16.3.27)

Note that, since G[t, t′] is a homogeneous solution with respect to t, so is ∂t′G[t, t′]. Therefore,
that Z[t] is a homogeneous solution is manifest; what remains is to show it satisfies the initial
conditions. But since G[t = t′] = 0 and ∂t′G[t = t′] = −1, we have

Z[t = t′] = 0− (−)x′; (16.3.28)

while using eq. (16.3.18),

Ż[t = t′] = ∂tG[t = t′]ẋ′ − ∂t∂t′G[t = t′]x′ = ẋ′. (16.3.29)

Next, we may use eq. (16.3.26) to deduce the solution to the boundary value problem

Z[t2] = x, Z[t1] = x′. (16.3.30)

It is given by

Z[t1 ≤ s ≤ t2] = G[s, t1]
x+ ∂t1G[t2, t1]x′

G[t2, t1]
− ∂t1G[s, t1]x′. (16.3.31)

That this is a solution follows from the fact that G[s, t1] and ∂t1G[s, t1] are both homogeneous
solutions with respect to s, so all we have to check are

Z[s = t1] = G[s = t1, t1]
x+ ∂t1G[t2, t1]x′

G[t2, t1]
− ∂t1G[s = t1, t1]x′ = x′ (16.3.32)

Z[s = t2] = G[t2, t1]
x+ ∂t1G[t2, t1]x′

G[t2, t1]
− ∂t1G[t2, t1]x′ = x. (16.3.33)
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This boundary value problem has no solution for times (t1, t2) such that G[t2, t1] = 0.
With the time derivative

∂sZ[t1 ≤ s ≤ t2] = ∂sG[s, t1]
x+ ∂t1G[t2, t1]x′

G[t2, t1]
− ∂s∂t1G[s, t1]x′. (16.3.34)

We may construct

Ż[t2]Z[t2]− Ż[t1]Z[t1] = ∂t2G[t2, t1]
x2 + ∂t1G[t2, t1](x′ · x)

G[t2, t1]
− ∂t2∂t1G[t2, t1](x′ · x)

− ∂sG[s = t1]
(x · x′) + ∂t1G[t2, t1]x′2

G[t2, t1]
+ ∂s∂t1G[s = t1]x′2

(16.3.35)

= ∂t2G[t2, t1]
x2 + ∂t1G[t2, t1](x′ · x)

G[t2, t1]
− ∂t2∂t1G[t2, t1](x′ · x)− (x · x′) + ∂t1G[t2, t1]x′2

G[t2, t1]
(16.3.36)

Re-arranging,

Ż[t2]Z[t2]− Ż[t1]Z[t1] =
∂t2G[t2, t1]x2 − ∂t1G[t2, t1]x′2

G[t2, t1]
+ (x′ · x)

{
∂t2G[t2, t1]∂t1G[t2, t1]− 1

G[t2, t1]
− ∂t2∂t1G[t2, t1]

}
.

(16.3.37)

A direct calculation using the Wronskian-based solution shows that

∂t2G[t2, t1]∂t1G[t2, t1]− 1

G[t2, t1]
− ∂t2∂t1G[t2, t1] = − 2

G[t2, t1]
. (16.3.38)

We arrive at

Ż[t2]Z[t2]− Ż[t1]Z[t1] =
∂t2G[t2, t1]x2 − ∂t1G[t2, t1]x′2

G[t2, t1]
− 2

G[t2, t1]
(x′ · x). (16.3.39)

JWKB Solutions We record here the JWKB solutions for Z1,2. Whenever ω is a slowly
varying function of time, we may attempt to use JWKB. The leading order solutions are

Z±[t] =
exp

[
±i
∫ t
t′
ω[s]ds

]
√
ω[t]

; (16.3.40)

and whose Wronskian is

Z+[t]Ż−[t]− Z−[t]Ż+[t] = −2i. (16.3.41)

Therefore, a direct calculation reveals

G[t, τ ] =
sin
[∫ t

τ
ω[s]ds

]
√
ω[t]ω[τ ]

. (16.3.42)
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Commutators Let us compute the commutator of the Heisenberg picture position operator
at different times using eq. (16.3.27).[

X i[t1], Xj[t2]
]

=
[
G[t1, t

′]pi[t′]− ∂t′G[t1, t
′]X i[t′],G[t2, t

′]pj[t′]− ∂t′G[t2, t
′]Xj[t′]

]
(16.3.43)

= −G[t1, t
′]∂t′G[t2, t

′]
[
pi[t′], Xj[t′]

]
− ∂t′G[t1, t

′]G[t2, t
′]
[
X i[t′], pj[t′]

]
(16.3.44)

= iδijG[t1, t
′]∂t′G[t2, t

′]− iδij∂t′G[t1, t
′]G[t2, t

′]. (16.3.45)

A direct calculation using eq. (16.3.11) reveals[
X i[t1], Xj[t2]

]
= −iδijG[t1, t2]. (16.3.46)

A quick check using the equal-time commutation relation and the boundary conditions G[t, t′ =
t] = 0 and ∂t′G[t, t′ = t] = −1: taking the time derivative with respect to t2 and then setting
t2 = t1 = t0, we gather [X1, Ẋ2]t2=t1=t0 = [X0, p0] = −iδij(−) = iδij.

Time-Ordered Products
Heisenberg Picture Position Operator Let us denote the Schrödinger picture posi-

tion and momentum operators as Xs and ps respectively. If the Heisenberg picture coincides with
the Schrödinger picture at t′, then let us argue that the Heisenberg picture position operator
XH[t] is related to the Schrödinger position and momentum operators via

XH[t] = psG[t, t′]−Xs∂t′G[t, t′]. (16.3.47)

Because of eq. (16.3.4) we see that ẌH + ω[t]2XH = 0; moreover, because of eq. (16.3.5), we
may check the Schrödinger picture is recovered at t = t′:

XH[t = t′] = psG[t = t′]−Xs∂t′G[t = t′] = Xs. (16.3.48)

Path Integral The path integral is

〈~x |U | ~x′〉 =

∫ ~x

~x′
D~q exp

[
i

2

∫ t

t′
~̇q2 − ω[s]2~q2ds

]
(16.3.49)

= eiS[~x,~x′]

∫ ~0

~0

D~q exp

[
i

2

∫ t

t′
~̇q2 − ω[s]2~q2ds

]
(16.3.50)

where S is the action evaluated on the classical trajectory that begins at ~qc[t
′] = ~x′ and ends at

~qc[t] = ~x. Now,

S ≡ 1

2

∫ t

t′
~̇q2
c − ω2~q2

cds =
1

2

[
~qc · ~̇qc

]t
t′
− 1

2

∫ t

t′
~qc ·
(

d2

ds2
+ ω2

)
~qcds (16.3.51)

=
1

2

[
~qc · ~̇qc

]t
t′
, (16.3.52)

since by assumption ~qc is the classical trajectory: (∂2
s + ω2)~qc = 0. Therefore,

〈~x |U | ~x′〉 = e
i
2(~x·~̇qc[t]−~x′·~̇qc[t′])

〈
~0 |U |~0

〉
. (16.3.53)
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Using eq. (16.3.39), we may express the following object:

K[t, t′; ~x, ~y]K[t, t′; ~x, ~y′] =
∣∣∣〈~0 |U |~0〉∣∣∣2 (16.3.54)

× exp

[
i

2

(
∂tG[t, t′]~x2 − ∂t′G[t, t′]~y2

G[t, t′]
− 2

G[t, t′]
(~x · ~y)

)]
× exp

[
− i

2

(
∂tG[t, t′]~x2 − ∂t′G[t, t′]~y′2

G[t, t′]
− 2

G[t, t′]
(~x · ~y′)

)]
= |
〈
~0 |U |~0

〉
|2 (16.3.55)

× exp

[
i

2

(
∂t′G[t, t′]

G[t, t′]
(~y′2 − ~y2)− 2

G[t, t′]
~x · (~y − ~y′)

)]
We may compute the functional determinant |

〈
~0 |U |~0

〉
|2 – which depends on time but not on

space – as follows. Notice∫
RD

dD~xK[t, t′; ~x, ~y]K[t, t′; ~x, ~y′] =

∫
RD

dD~x
〈
~y′
∣∣U †∣∣ ~x〉 〈~x |U | ~y〉 = δ(D)[~y′ − ~y]

= |
〈
~0 |U |~0

〉
|2
∫
RD

dD~x exp

[
− i

G[t, t′]
~x · (~y − ~y′)

]
= |
〈
~0 |U |~0

〉
|2 |G[t, t′]|D (2π)Dδ(D) [~y − ~y′] (16.3.56)

We therefore have

K[t, t′; ~x, ~y]K[t, t′; ~x, ~y′] = |2πG[t, t′]|−D exp

[
i

2

∂t′G[t, t′]

G[t, t′]
(~y′2 − ~y2)− i

G[t, t′]
~x · (~y − ~y′)

]
.

(16.3.57)

17 Variational Method: Examples

Theorem The basic premise behind the variational method is:

The expectation value of the Hamiltonian H with respect to any physical state
|ψ〉 is always greater or equal to the lowest, i.e., ground state, energy E0.

E0 ≤
〈ψ |H|ψ〉
〈ψ|ψ〉

, ∀ |ψ〉 . (17.0.1)

It’s possible to obtain such bounds on excited states, if you know how to construct trial states
that are orthogonal to all the lower lying ones. For instance, if |E0〉 is the ground state, E1 is
the first excited state energy level, and 〈ψ|E0〉 = 0; then

E1 ≤
〈ψ |H|ψ〉
〈ψ|ψ〉

, ∀ |ψ〉 . (17.0.2)
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More generally, if 〈ψ|E0〉 = . . . 〈ψ|En−1〉 = 0, where {Ei|i = 0, . . . , n− 1} are the first n energy
levels, then

En ≤
〈ψ |H|ψ〉
〈ψ|ψ〉

, ∀ |ψ〉 . (17.0.3)

Variational Method This means, to estimate E0, we may cook up some trial state |ψ; {αI}〉
with parameters {αI}; and compute 〈ψ; {αI} |H|ψ; {αI}〉 / 〈ψ; {αI}|ψ; {αI}〉. Then we may min-
imize this quantity – this is why it is dubbed the ‘variational method’ – with respect to the {αI}
and use the ensuing minimum 〈ψ; {αI} |H|ψ; {αI}〉 / 〈ψ; {αI}|ψ; {αI}〉 as an estimate E0. Of
course, there is some art involved here, since the form of the trial state is only constrained by
the practitioner’s creativity.

1D SHO Let us use a gaussian with an arbitrary width, namely

〈x|ψ; a〉 = exp(−(a/2)x2), (17.0.4)

as the trial ground state in the 1D simple harmonic oscillator. Via a direct calculation,

H =
p2

2m
+

1

2
ω2x2, (17.0.5)

〈ψ; a |H|ψ; a〉
〈ψ; a|ψ; a〉

=

∫
R e
−(ax2)/2

(
− ∂2x

2m
+ 1

2
ω2x2

)
e−(ax2)/2dx∫

R e
−ax2dx

(17.0.6)

=
a2 + ω2

4a
(17.0.7)

Minimizing this means

∂

∂a

a2 + ω2

4a
= 0; (17.0.8)

whose solutions are a = ±ω. Since we want the positive root – otherwise the gaussian will blow
up at infinity – we then recover the exact ground state energy

E0[est.] =
a2 + ω2

4a

∣∣∣∣
a=ω

=
ω

2
. (17.0.9)

Hydrogen Atom Let us use a decaying exponential with an arbitrary width, namely

〈x|ψ; a〉 = exp(−(a/2)r), (17.0.10)

as the trial ground state in the hydrogen-like atom. Via a direct calculation,

H =
p2

2m
− Ze2

r
, (17.0.11)

〈ψ; a |H|ψ; a〉
〈ψ; a|ψ; a〉

=

∫ +∞
0

e−ar/2
(
− ~∇2

2m
− Ze2

r

)
e−ar/2dr∫∞

0
e−ardr

(17.0.12)

=
a(a− 4e2mZ)

8m
(17.0.13)
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Minimizing this means

∂

∂a

a(a− 4e2mZ)

8m
= 0; (17.0.14)

whose solution is a = 2me2Z. We then recover the exact ground state energy

E0[est.] =
a(a− 4e2mZ)

8m

∣∣∣∣
a=2me2Z

= −(Ze2)2

2
m. (17.0.15)

Problem 17.1. Consider the quartic oscillator, defined by

H =
P 2

2m
+
λ

4!
X4. (17.0.16)

Assume the ground state is even under parity transformations. Estimate the ground state and
the first excited state energy levels.

18 Rayleigh-Schrödinger Perturbation Theory

18.1 1D SHO perturbed with a x4 potential

Let us consider

H =
p2

2
+

1

2
ω2x2 + λx4. (18.1.1)

We may split this Hamiltonian up into the SHO plus the x4 term.

H = H0 +H1, (18.1.2)

H0 ≡
p2

2
+

1

2
ω2x2, (18.1.3)

H1 ≡ λx4. (18.1.4)

First Order Shift of Ground State Energy We may compute the first order shift in
the ground state energy

〈x|E0〉 =

√
ω

π
exp

(
−ω

2
x2
)

(18.1.5)

δ1E0 = λ
〈
E0

∣∣X4
∣∣E0

〉
= λ

∫
R
x4ω

π
exp

(
−ωx2

)
dx (18.1.6)

= λ
ω

π
∂2
ω

√
π

ω
=

3λ

4
√
πω

3
2

. (18.1.7)

Why does this answer blow up with ω → 0? Can you estimate, when does perturbation theory
break down?
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18.2 Hydrogen-like Atoms

18.2.1 Stark Effect

Quadratic Stark Effect of Ground State Let us consider immersing a hydrogen-like
atom in a constant electric field, which we shall denote as

~E = Eẑ = −~∇(−Ez). (18.2.1)

The Hamiltonian is

H = H0 +H1, (18.2.2)

H0 ≡
~p2

2m
− Ze2

r
, (18.2.3)

H1 ≡ −eEz. (18.2.4)

Ignoring spin, the ground state of hydrogen is non-degenerate. The first order correction is

δ1E0 = −eE
〈
Ē1 |z| Ē1

〉
= 0. (18.2.5)

because of parity. There is no linear Stark effect for the ground state.
Let’s do quadratic order. We need to compute

δ2E0 = −(eE)2
∑
s>1

|
〈
Ēs |Z| Ē0

〉
|2

Ēs − Ē1

. (18.2.6)

The sum must include all excited bound states as well as the integral over the continuum states.
Following Sakurai, we may estimate this sum as follows

δ2E0 < −
(eE)2

Ē2 − Ē1

∑
s>1

〈
Ē1 |Z| Ēs

〉 〈
Ēs |Z| Ē1

〉
(18.2.7)

= − (eE)2

Ē2 − Ē1

〈
Ē1

∣∣Z2
∣∣ Ē1

〉
. (18.2.8)

By spherical symmetry of the ground state〈
Ē1

∣∣Z2
∣∣ Ē1

〉
=
〈
Ē1

∣∣Y 2
∣∣ Ē1

〉
=
〈
Ē1

∣∣X2
∣∣ Ē1

〉
=

1

3

〈
Ē1

∣∣r2
∣∣ Ē1

〉
=
a2

B

3
. (18.2.9)

whereas Ē2 − Ē1 = (3e2/(8aB)). Hence

0 > δ2E0 > −
8a3

B

9
(eE)2. (18.2.10)

Linear Stark Effect for Excited States As long as the electric field is large enough so
that the Stark effect overwhelms the spin-orbit interactions, the excited states are degenerate –
remember 0 ≤ ` ≤ n− 1 and −` ≤ m ≤ m – we need to apply degenerate perturbation theory.
In particular, we need to diagonalize〈

n; `1,m1

∣∣X3
∣∣n; `2,m2

〉
=
〈
n; `1,m1

∣∣X0
1

∣∣n; `2,m2

〉
. (18.2.11)
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We recognize the third component of a vector to be the m = 0 component of its ` = 1 spherical
tensor counterpart. Hence

m1 = m2. (18.2.12)

Moreover, by the Wigner-Eckart theorem, we know that such a matrix element is proportional
to the Clebsch-Gordon coefficient arising from adding angular momentum 1 and `2 to obtain `1.〈

n; `1,m1

∣∣X3
∣∣n; `2,m2

〉
= 〈`1 m1,2; 1 `2| 1 0, `2 m1,2〉
× 〈n; `1||X0

1 ||n; `2〉. (18.2.13)

which in turn informs us, for `2 = 0,

`1 = 1; (18.2.14)

and for `2 ≥ 1,

`1 = `2 − 1, `2, `2 + 1 ≤ n− 1. (18.2.15)

Finally, under parity transformations,19〈
n; `1,m1

∣∣PX3P
∣∣n; `2,m2

〉
= −

〈
n; `1,m1

∣∣X3
∣∣n; `2,m2

〉
(18.2.16)

= (−)`1+`2
〈
n; `1,m1

∣∣X3
∣∣n; `2,m2

〉
. (18.2.17)

That means we require `1 + `2 + 1 to be even – for e.g., `1 6= `2. Since `1,2 can differ by at most
one,

|`1 − `2| = 1. (18.2.18)

Let us examine the n = 2 states. Here, `2 = 0, 1. But because ` cannot be greater than unity,
we have

`1 = 0, 1. (18.2.19)

Since `1 6= `2, we can only have (`1 = 1, `2 = 0) or (`1 = 1, `2 = 0). Moreover, this also teaches
us m1 = m2 = 0. The relevant un-perturbed eigenstates are

〈r, θ, φ|n = 2; ` = 0 m = 0〉 =
2− r/aB

(2aB)3/2
exp

(
− r

2aB

)
Y 0

0 (18.2.20)

〈r, θ, φ|n = 2; ` = 1 m = 0〉 =
1

(2aB)3/2

r

31/2aB

exp

(
− r

2aB

)
Y 0

1 (θ, φ) (18.2.21)

Y 0
0 =

1√
4π
, Y 0

1 (θ, φ) =
1

2

√
3

π
cos θ. (18.2.22)

Via a direct calculation, we may deduce〈
n = 2; ` = 0 m = 0

∣∣X3
∣∣n = 2; ` = 1 m = 0

〉
=
〈
n = 2; ` = 1 m = 0

∣∣X3
∣∣n = 2; ` = 0 m = 0

〉
= −3aB. (18.2.23)

19Very similar considerations apply for dipole radiative transitions.
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The corresponding eignenstates and eigenvalues of H1 = −eEX3 is therefore

H1 |±3eEaB〉 = ±3eEaB |±3eEaB〉 (18.2.24)

|±3eEaB〉 =
1√
2

(|n = 2; ` = 1 m = 0〉 ± |n = 2; ` = 0 m = 0〉) . (18.2.25)

Remember the shift in energy is precisely these eigenvalues

δ1En=2 = ±3eEaB. (18.2.26)

Symmetry vs degeneracy The degeneracy is lifted for the states involving |` = 0,m = 0〉 and
|` = 1,m = 0〉. Physically speaking, we may attribute this to the electric field breaking the
original rotational symmetry of the H0. On the other hand, notice the |` = 1,m = ±1〉 states
still yield un-perturbed energies up to first order; i.e., their degeneracy is not lifted. Physically,
we may attribute this remaining degeneracy to the residual axial symmetry under rotation about
the direction parallel to ~E.

Caution We are ignoring spin here. Actually, the spin-orbit interaction involving the
operator ~L · ~S can be more important that the −eE ~X · ~E dipole interaction here, for very weak
electric fields. So the results here are really only valid for strong enough electric fields – but not
too strong that perturbation theory itself breaks down!

Problem 18.1. Linear Stark Effect for n = 3 Still ignoring spin, work out the first
order shift in the n = 3 energy levels due to the Stark effect.

Relativistic Corrections In relativity, the kinetic energy is

K =
√
~p2 +m2 −m2 =

~p2

2m
− (~p2)2

8m3
+O(~p6/m5). (18.2.27)

If we consider hydrogen-like atoms,

H = H0 +H1 (18.2.28)

H0 =
~p2

2m
− Ze2

r
(18.2.29)

H1 = −(~p2)2

8m3
; (18.2.30)

we may compute the first order corrections to the energy levels due to the relativistic correction
in H1. Let’s begin with the ground state, which is non-degenerate if we ignore spin. The ground
state is

〈~x| Ē1

〉
=

exp(−r/aB)
√
πa

3/2
B

, aB ≡ (me2Z)−1 (18.2.31)

Ēn = − m

2n2
(e2Z)2 = − 1

2m(naB)2
≈ −(13.6eV)

Z2

n2
. (18.2.32)
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We find that

δ1E1 =
〈
Ē1 |H1| Ē1

〉
= −

〈
Ē1

∣∣∣∣ (~p2)2

2m(2m)2

∣∣∣∣ Ē1

〉
(18.2.33)

= − 1

2m

〈
Ē1

∣∣ (H0 +
Ze2

r

)2 ∣∣Ē1

〉
(18.2.34)

= − 1

2m

(
Ē2

0 + 2Ē0

〈
Ē1

∣∣ Ze2

r

∣∣Ē1

〉
+
〈
Ē1

∣∣ (Ze2)2

r2

∣∣Ē1

〉)
. (18.2.35)

A direct calculation would tell us 〈
Ē1

∣∣ Ze2

r

∣∣Ē1

〉
= −2Ē1 (18.2.36)〈

Ē1

∣∣ (Ze2)2

r2

∣∣Ē1

〉
= 8Ē2

1 . (18.2.37)

Therefore

δ1E1 = −5

8
(e2Z)4m =

5

4
(e2Z)2Ē1. (18.2.38)

Note that H1 is rotationally symmetric. So it is already diagonal in the |n; `,m〉 basis. Following
Sakurai, we first write

δ1En,`,m = 〈n; `,m |H1|n; `,m〉

= −
〈
n; `,m

∣∣∣∣ (~p2)2

2m(2m)2

∣∣∣∣n; `,m

〉
(18.2.39)

= − 1

2m
〈n; `,m|

(
H0 +

Ze2

r

)2

|n; `,m〉 (18.2.40)

= − 1

2m

(
Ē2

0 + 2Ē0 〈n; `,m| Ze
2

r
|n; `,m〉+ 〈n; `,m| (Ze

2)2

r2
|n; `,m〉

)
. (18.2.41)

〈n; `,m| Ze
2

r
|n; `,m〉 = −2Ēn (18.2.42)

〈n; `,m| (Ze
2)2

r2
|n; `,m〉 =

4n

`+ 1/2
Ē2
n. (18.2.43)

δ1En,`,m = −m
2

(Ze2)4

(
1

n3(`+ 1/2)
− 3

4n4

)
(18.2.44)

18.2.2 Spin-Orbit & Fine Structure

Spin-Orbit & Fine Structure20 Consider a multi-electron atom, such that the zeroth
order Hamiltonian of one of its electrons is

H0 =
~p2

2m
+ Vc(r). (18.2.45)

20This discussion is modeled after that in Sakurai [3].
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Suppose the eigenstates are

〈r, θ, φ|n; `,m〉 = R`
n(r)Y m

` (θ, φ). (18.2.46)

The spin-orbit interaction, which goes as the magnetic moment dotted into the ~B−field (i.e.,

−~µ · ~B), is

H1 =
1

2m2
e

1

r

dVc
dr

~L · ~S (18.2.47)

=
1

2m2
e

1

r

dVc
dr

1

2

(
~J2 − ~L2 − ~S2

)
, (18.2.48)

where the dV/dr is related to the electric field experienced by the moving charge as it orbits the
nucleus.

The eigenstates that render H1 diagonal therefore involve the total angular momentum eigen-
states {|n; j = `± 1/2 m; ` 1/2〉}. They can be constructed using {n; `,m} above, tensor-ed with
the spin degrees of freedom:∣∣∣∣n; j = `± 1

2
m; `

1

2

〉
=

∑
m=m`+ms

|n; `,m`〉 ⊗
∣∣∣∣12 ,ms

〉 〈
` m`,

1

2
ms

∣∣∣∣ j = `± 1

2
m; `

1

2

〉
.

(18.2.49)

The energy shift is therefore

δ1En,j,` =

〈
n; j = `± 1

2
m; `

1

2

∣∣∣∣H1

∣∣∣∣n; j = `± 1

2
m; `

1

2

〉
=

1

4m2
e

(
j(j + 1)− `(`+ 1)− 1

2

(
1

2
+ 1

))〈
n; `

∣∣∣∣1r dVc
dr

∣∣∣∣n; `

〉
=

1

4m2
e

〈
n; `

∣∣∣∣1r dVc
dr

∣∣∣∣n; `

〉
×
{
` for j = `+ 1

2

−(`+ 1) for j = `− 1
2

(18.2.50)〈
n; `

∣∣∣∣1r dVc
dr

∣∣∣∣n; `

〉
=

∫ ∞
0

R`
n(r)

1

r

dVc(r)

dr
R`
n(r)r2dr. (18.2.51)

According to Sakurai, this is known as Lande’s interval rule. If Vc is simply the Coulomb
potential; setting ` = 0 actually yields the result obtained from the Darwin term. See Sakurai
for a specific discussion on sodium.

18.2.3 Zeeman Effect

Zeeman effect The vector potential associated with a constant magnetic field ~B is

Ai =
1

2
( ~B × ~x)i =

1

2
εijkBjxk. (18.2.52)

Check:

(~∇× ~A)a = ∂b
(
εabcAc

)
(18.2.53)
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=
1

2
∂b
(
εabcεcjkBjxk

)
(18.2.54)

=
1

2
(δaj δ

b
k − δakδbj)Bjδkb =

1

2
(3δaj − δaj )Bj (18.2.55)

= Ba (18.2.56)

If we include spin-orbit interactions, the Hamiltonian in the presence of a vector potential is

H = (2me)
−1
(
~p− e ~A

)2

+
1

2m2

V ′(r)

r
~L · ~S + V (18.2.57)

= (2me)
−1
(
~p2 + e2 ~A2 − e(~p · ~A+ ~A · ~p)

)
+ V. (18.2.58)

It turns out, in this case, that ~A · ~p = ~p · ~A.〈
~x
∣∣∣~p · ~A∣∣∣ψ〉 = −i~∇ ·

(
~A 〈~x|ψ〉

)
(18.2.59)

= −i
(
~∇ · ~A+ ~A · ~∇

)
〈~x|ψ〉 (18.2.60)

〈
~x
∣∣∣ ~A · ~p∣∣∣ψ〉 = −i ~A · ~∇ 〈~x|ψ〉 (18.2.61)

= − i
2
εabcBbxc∂a 〈~x|ψ〉 = − i

2
εbcaBbxc∂a 〈~x|ψ〉 (18.2.62)

= − i
2
~B ·
(
~x× ~∇

)
〈~x|ψ〉 =

1

2

〈
~x
∣∣∣ ~B · ~L∣∣∣ψ〉 . (18.2.63)

We may compute

~∇ · ~A =
1

2
∂a(ε

abcBbxc) =
1

2
εabcBbδca = 0. (18.2.64)

Moreover, note that

~A2 =
1

4
εaijεabcBiBbxjxc =

1

4
(δibδ

j
c − δicδ

j
b)B

iBbxjxc (18.2.65)

=
1

4

(
B2r2 − ( ~B · ~x)2

)
. (18.2.66)

Weak B field We need to include the interaction between ~B and spin; i.e., −~µ · ~B =
−(ge/(2me)) ~B · ~S with g ≈ 2. The Hamiltonian at this point reads

H ′ = H0 +H1 +H2, (18.2.67)

H0 ≡
~p2

2me

+ V +
1

2m2

V ′(r)

r
~L · ~S (18.2.68)

H1 ≡ −
e

2me

~B · (~L+ g~S) (18.2.69)

H2 ≡
e2

8m

(
B2r2 − ( ~B · ~x)2

)
. (18.2.70)
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The eigenstates of H0 may be labeled by (n, j,m, `), where n is the Bohr-like energy label, j is
the total angular momentum, m is its azimuthal number, and ` is the orbital angular momentum.
Let us use the fact that ~L+ g~S is a vector operator to assert〈

n, j,m1, `
∣∣Bi(Li + gSi)

∣∣n, j,m2, `
〉

= χn,j,`
〈
j,m

∣∣J i∣∣ j,m〉Bi, (18.2.71)

χn,j,` ≡

〈
n, j,m1, `

∣∣∣ ~J(~L+ g~S)
∣∣∣n, j,m2, `

〉
j(j + 1)

, (18.2.72)

where χn,j,` is a constant independent of the ms.

χn,j,` =

〈
n, j,m1, `

∣∣∣~L2 + ~L · ~S + g~S2 + g~L · ~S
∣∣∣n, j,m2, `

〉
j(j + 1)

(18.2.73)

= (j(j + 1))−1

{
`(`+ 1) + g

1

2

3

2
+

1 + g

2

〈
n, j,m1, `

∣∣∣ ~J2 − ~L2 − ~S2
∣∣∣n, j,m2, `

〉}
(18.2.74)

= (j(j + 1))−1

{
`(`+ 1) + g

1

2

3

2
+

1 + g

2

(
j(j + 1)− `(`+ 1)− 3

4

)}
(18.2.75)

= 1 + (g − 1)
j(j + 1)− `(`+ 1) + 3/4

2j(j + 1)
= χj,`. (18.2.76)

We see that χn,j,` in fact does not depend on n.

Problem 18.2. Verify that

χj=`±1/2,` = 1± g − 1

2`+ 1
≈ 1± 1

2`+ 1
. (18.2.77)

Remember: for a single electron j = `± 1/2.

The expectation value of H1 may now be expressed as

〈n, j,m, ` |H1|n, j,m, `〉 = −egj,`
2me

〈
n, j,m, `

∣∣∣ ~B · ~J∣∣∣n, j,m, `〉 . (18.2.78)

Choosing ~B to be parallel to the z−axis, ~B = Bẑ, we must have

δ1En,j=`±1/2,m,` = 〈n, j = `± 1/2,m, ` |H1|n, j = `± 1/2,m, `〉 (18.2.79)

= − eB

2me

(
1± g − 1

2`+ 1

)
m ≈ − eB

2me

(
1± 1

2`+ 1

)
m. (18.2.80)

For sodium, when ~B = 0, Weinberg tells us the D1 lines are due to

3p1/2 → 3s1/2 (18.2.81)

(n = 3, ` = 1, j = 1/2 = `− 1/2)→ (n = 3, ` = 0, j = 1/2 = `+ 1/2). (18.2.82)

This means when a ~B field is turned on, the D1 line is split into

∆E(m→ m′) = − eB

2me

((
1− 1

3

)
m− (1 + 1)m′

)
(18.2.83)

= − eB

2me

(
2

3
m− 2m′

)
. (18.2.84)
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Here, m = ±1/2 = m′. Therefore there are 4 possible transitions.

∆E(±1/2→ ±1/2) = ∓ eB

2me

(
1

3
− 2

)
= ∓ eB

2me

2

3
(18.2.85)

∆E(±1/2→ ∓1/2) = ∓ eB

2me

(
1

3
+ 2

)
= ∓ eB

2me

4

3
. (18.2.86)

Weinberg tells us that these results allowed Lorentz (who set g = 1) to conclude from Zeeman’s
data to recognize that the particles responsible for these radiative transitions must have a e/m
roughly 3 orders of magnitude larger than those in electrolysis.

Problem 18.3. Verify Weinberg eq. 5.2.11. Then, recall from Wigner-Eckart that 〈j,m1 |J i| j,m2〉
is non-zero only when |m1 − m2| ≤ 1. Use this to explain/verify Weinberg equations 5.2.14
through 5.2.16.

Strong B field Thus far, we have assumed that B is small enough that H1 may be
treated as a perturbation. If B is much stronger, the spin-orbit term becomes a perturbation
relative to this Zeemann term.

H ′ = H0 +H1, (18.2.87)

H0 ≡
~p2

2me

+ V (18.2.88)

H1 ≡ −
e

2me

~B · (~L+ g~S). (18.2.89)

In this situation, we may use the basis
∣∣n; ` m`,

1
2
ms

〉
and compute

δ1E =

〈
n; ` m`,

1

2
ms |H1|n; ` m`,

1

2
ms

〉
(18.2.90)

= − eB

2me

(m` + gms) . (18.2.91)

18.2.4 van der Waals Forces between atoms

21Consider two neutral atoms, which we shall label as atom 1 and atom 2. In this section, we will
use perturbation theory to compute the expectation value of the energy due to their interactions.

The Coulomb potential between all the charges involved, can be split into 3 terms: the
potential between the charges within atom 1, which we will dub V1; the potential between the
charges within atom 2, V2; as well as the inter-atom potential,

Vint =
1

2

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

eaeb

|~xa − ~yb − ~R|
. (18.2.92)

Here, ~xa points from the center-of-mass of atom 1 to its ath charge; whereas ~yb points from the
center-of-mass of atom 2 to its bth charge; and, finally, ~R points from the center-of-mass of atom

21The discussion here follows Weinberg. It is rather heavy-going; so look at the discussion in Sakurai first, if
you desire a more friendly warm-up first.
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1 to that of atom 2. Hence, ~R + ~yb points from the COM of A1 to the b charge; and therefore
~xa − ~yb − ~R is the vector from a to b.

The total Hamiltonian, ignoring spin effects, is then

H = H
(A1)
0 +H

(A2)
0 +H1, (18.2.93)

H
(A1)
0 ≡

∑
ea∈A1

~p2
a

2ma

+ V1, H
(A2)
0 ≡

∑
eb∈A2

~p2
b

2mb

+ V2, (18.2.94)

H1 ≡ Vint =
1

2

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

eaeb

|~xa − ~yb − ~R|
. (18.2.95)

We will assume that |~xa|, |~yb| � R, i.e., the characteristic size of the atoms is much smaller
than their separation; and there is negligible overlap between the wavefunctions of the charges
in atom 1 with those in atom 2. These assumptions allow us to expand the H1 as follows.

H1 =
1

2

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

∞∑
`a=0

∞∑
`b=0

(
−~xa · ~∇~R

)`a
`a!

(
~yb · ~∇~R

)`b
`b!

eaeb

|~R|
(18.2.96)

Now, the 1/|~xa − ~ya − ~R| satisfies

~∇2
~xa

1

4π|~xa − ~yb − ~R|
= −δ(3)

(
~xa − ~ya − ~R

)
(18.2.97)

~∇2
~yb

1

4π|~xa − ~yb − ~R|
= −δ(3)

(
~xa − ~ya − ~R

)
; (18.2.98)

whose right hand sides become zero for the limits |~xa|, |~yb| � R. This means H1 satisfies the

homogeneous Laplace equation with respect to ~xa, ~yb, and ~R. In eq. (18.2.96), since ~xa now

occurs only within the power (−~xa · ~∇)`a and ~yb only within the (~yb · ~∇)`b ; it must be that each
term within the summation is proportional to

|~xa|`aY ma
`a

(x̂a)|~yb|`bY mb
`b

(ŷb) ≡ Y ma
`a

(~xa)Y
mb
`b

(~yb), (18.2.99)

because both Y ma
`a

(~xa) and Y mb
`b

(~yb) are homogeneous solutions of the Laplace equation with

respect to ~xa and ~yb. By dimensional analysis, the remaining factor must scale as 1/|~R|`a+`b+1.
Moreover, the product of the spin−`a and spin−`b from the Y ma

`a
(~xa) and Y mb

`b
(~yb) must be

compensated by a Y −ML (R̂) such that the result has zero spin, since H1 itself is a scalar. That
is: |`a − `b| ≤ L ≤ `a + `b and M = −(ma +mb). Altogether,

H1 =
1

2

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

∞∑
`a=0

∞∑
`b=0

eaeb

|~R|`a+`b+1

∑
|`a−`b|≤L≤`a+`b

χ`a,`b,L

+L∑
M=−L

(−)MY −ML (R̂)

×
∑

ma+mb=M

Y ma
`a

(~xa)Y
mb
`b

(~yb) 〈`a ma, `b mb|L M ; `a `b〉 . (18.2.100)
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The second line amounts to ‘adding’ spin−`a to spin−`b to get a total spin L; i.e., it is propor-
tional to Y M

L . Then, we see that
∑

M(−)MY −ML Y M
L yields a spin 0 object. We may check this

expression by recalling the spherical harmonic expansion, for |~R| > |~r|,

1

|~R− ~r|
= 4π

+∞∑
`=0

1

|~R|`+1

1

2`+ 1

+∑̀
m=−`

(−)mY m
` (~r)Y −m` (R̂). (18.2.101)

(Recall: Y m
` = (−)mY −m` .) For instance, setting ~yb = ~0, we may identity ~xa ↔ ~r. Then only the

`b = 0 = mb terms survive in eq. (18.2.100).

∑
ea∈A1

∑
~xa∈A1

∞∑
`a=0

eaeb

|~R|`a+1
χ`a,`b=0,L=`a

`a∑
ma=−`a

(−)maY −ma`a
(R̂)Y ma

`a
(~xa). (18.2.102)

Let us define the electric multipole moments

Ema
`a

[1] ≡
∑
ea∈A1

∑
~xa∈A1

eaY
ma
`a

(~xa) (18.2.103)

Emb
`b

[2] ≡
∑
eb∈A2

∑
~yb∈A2

ebY
mb
`b

(~yb). (18.2.104)

Note that, when either `a = 0 or `b = 0,

E0
0 [1] =

∑
ea∈A1

∑
~xa∈A1

ea/
√

4π = 0 (18.2.105)

or E0
0 [2] =

∑
eb∈A2

∑
~yb∈A2

eb/
√

4π = 0. (18.2.106)

This is a consequence of the assumption that these atoms are neutral. Moreover, the L = 0 term
must be zero because its coefficient must be gotten from multiplying H1 by Y 0

0 (R̂) = 1/
√

4π and

integrating with respect to R̂ over the 2−sphere.

L = 0 :
1

2
√

4π

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

eaeb

∫
S2

d2R̂

|~xa − ~yb − ~R|
(18.2.107)

Now, ∫
S2

d2R̂

|~r − ~R|
=

∫
S2

d2R̂
∣∣∣r2 +R2 − rRR̂ · r̂

∣∣∣−1/2

(18.2.108)

= 2π

∫ +1

−1

dc
∣∣r2 +R2 − rRc

∣∣−1/2
(18.2.109)

= − 2π

Rr
(|r −R| − |r +R|) R>r→ 4π

R
. (18.2.110)
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Hence,

L = 0 :
1

2
√

4π

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

eaeb

∫
S2

d2R̂

|~xa − ~yb − ~R|
=

√
4π

2

∑
ea∈A1
eb∈A2

∑
~xa∈A1
~yb∈A2

eaeb

|~R|
= 0; (18.2.111)

again by neutrality.
Finally, consider the simultaneous parity operations ~xa → −~xa, ~yb → −~yb and ~R → −~R;

which leaves H1 ∝ 1/|~xa − ~yb − ~R| invariant. But Y m
` (−n̂) = (−)`Y m

` (n̂). Examining eq.
(18.2.100), we see that

Y −ML (−R̂)Y ma
`a

(−~xa)Y mb
`b

(−~yb) = (−)`a+`b+LY −ML (R̂)Y ma
`a

(~xa)Y
mb
`b

(~yb). (18.2.112)

But since such a parity operation must leave the H1 invariant, and since the spherical harmonics
are linearly independent basis functions, `a + `b + L must be even.

Taking all these considerations into account, we may surmise eq. (18.2.100) reads

H1 =
1

2

∞∑
`a=1

∞∑
`b=1

1

|~R|`a+`b+1

∑
|`a−`b|≤L≤`a+`b

L6=0
`a+`b+L even

χ`a,`b,L

+L∑
M=−L

(−)MY −ML (R̂)

×
∑

ma+mb=M

Ema
`a

[1]Emb
`b

[2] 〈`a ma, `b mb|L M ; `a `b〉 . (18.2.113)

To zeroth order, H1 = 0 and the eigenstates of H0 are the tensor product of the eigenstate of
atom 1 with those of atom 2 – namely |E1〉 ⊗ |E2〉 – which obeys

H
(A1)
0 |E1〉 = E1 |E1〉 and H

(A1)
0 |E2〉 = E2 |E2〉 . (18.2.114)

At first order in perturbation theory, the corrections to the energies are

δ1(E1|E2) =
1

2

∞∑
`a=1

∞∑
`b=1

1

|~R|`a+`b+1

∑
|`a−`b|≤L≤`a+`b

L6=0
`a+`b+L even

χ`a,`b,L

+L∑
M=−L

(−)MY −ML (R̂) (18.2.115)

×
∑

ma+mb=M

〈
E1

∣∣Ema
`a

[1]
∣∣E1

〉 〈
E2

∣∣Emb
`b

[2]
∣∣E2

〉
〈`a ma, `b mb|L M ; `a `b〉 .

This δ1(E1|E2) may be interpreted as the potential energy due to the interactions between atoms
1 and 2.

Under parity, we have just noted that the electric multipole operators transform as Em
` →

(−)`Em
` . Hence, if the dynamics of the individual atomic systems is parity invariant – their

Hamiltonians commute with the parity operator [H
(A1)
0 , P ] = 0 = [H

(A2)
0 , P ] – then the expecta-

tion value 〈Em
` 〉 is zero unless ` is even because

P |E1,2〉 = ± |E1,2〉 (18.2.116)

⇒ 〈E1,2 |PEm
` P |E1,2〉 = (〈E1,2|P )Em

` (P |E1,2〉) = 〈E1,2 |Em
` |E1,2〉 (18.2.117)

= 〈E1,2 |(PEm
` P )|E1,2〉 = (−)` 〈E1,2 |Em

` |E1,2〉 . (18.2.118)

To sum:
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To leading order, the potential energy arising from the interactions between neu-
tral atoms, whose individual dynamics obeys parity, vanishes unless their electric
multipole moments are even.

δ1(E1|E2) =
1

2

∞∑
`a=2
`a even

∞∑
`b=1
`b even

1

|~R|`a+`b+1

∑
|`a−`b|≤L≤`a+`b

L6=0
`a+`b+L even

χ`a,`b,L

+L∑
M=−L

(−)MY −ML (R̂)

×
∑

ma+mb=M

〈
E1

∣∣Ema
`a

[1]
∣∣E1

〉 〈
E2

∣∣Emb
`b

[2]
∣∣E2

〉
〈`a ma, `b mb|L M ; `a `b〉 .

(18.2.119)

Problem 18.4. Work out eq. (18.2.119) up to the quadrupole order, i.e., 0 ≤ `a, `b ≤ 2, in
terms of the electric dipole

~D(1) ≡
∑
a∈A1

ea ~Xa (18.2.120)

~D(2) ≡
∑
b∈A2

eb~Yb; (18.2.121)

and traceless quadrupole

Qij
(1) ≡

∑
a∈A1

ea

(
X i
aX

j
a −

1

3
δij ~X2

a

)
(18.2.122)

Qij
(2) ≡

∑
b∈A2

eb

(
Y i
aY

j
a −

1

3
δij ~Y 2

a

)
(18.2.123)

operators. Hint: Remember the expansion in eq. (18.2.96).

Unpolarized Atoms If the atomic states |E; j′,m′〉 are equally likely to take on any
azimuthal m′ value for a fixed j′, we say they are unpolarized. In such a case, we will average
over m′, and invoke Wigner-Eckart to see that m = 0 on the Em

` in order to produce a non-zero
result.

〈〈Em
` 〉〉 ≡

1

2j′ + 1

+j′∑
m′=−j′

〈j′,m′ |Em
` | j′,m′〉 (18.2.124)

=
〈j′| |E`| |j′〉

2j′ + 1
δ0
m

+j′∑
m′=−j′

〈j′ m′; ` j′| ` 0, j′ m′〉 . (18.2.125)

Weinberg shows in the discussion leading up to his eq. (4.3.41) and the one leading up to
(4.4.21), that

∑
m′ 〈j′ m′; ` j′| ` 0, j′ m′〉 is zero unless ` = 0. Since neither `a nor `b can be zero

in our case, this tells us:

To first order in perturbation theory, a pair of unpolarized atoms suffers no shift
in energies due to their mutual interactions.
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That teaches us, to study the effective potential energy between two unpolarized atoms, we have
to go to second order in perturbation theory.

δ2(E1|E2) =
∑
E′1,E

′
2

| 〈E ′1 ⊗ E ′2 |H1|E1 ⊗ E2〉 |2

E1 + E2 − E ′1 − E ′2
(18.2.126)

The dominant term, as R → ∞, arises from multiplying the lowest power of 1/R in eq.
(18.2.113). We observe that

〈j′ m′ |Em
` | j′′ m′′〉 ∝ 〈j′ m′; ` j′′| ` m, j′′ m′′〉 (18.2.127)

is generically non-zero starting from j′ = 0 – this simply requires ` = j′′, for instance. The
electric dipole, as Weinberg reminds us, would induce a transition from 1s to 2p. To lowest
order in 1/R, we take the `a = 1 = `b term in eq. (18.2.113),

δ2(E1|E2) ≈ 1

4R6

∑
E′1+E′2 6=E1+E2

(E1 + E2 − E ′1 − E ′2)
−1

∣∣∣∣∣χ1,1,L=2

+2∑
M=−2

(−)MY −M2 (R̂)

×
∑

ma+mb=M

〈E ′1|Ema
1 [1] |E1〉 〈E ′2|E

mb
1 [2] |E2〉 〈1 ma, 1 mb| 2 M ; 1 1〉

∣∣∣∣∣
2

.

(18.2.128)

Unpolarized Ground States Attract If E1 and E2 are the ground states of the individual
atoms 1 and 2; we see that the van der Waals effective potential not only goes as 1/R6, it is in
fact attractive, because the potential energy is negative, since E1 + E2 − E ′1 − E ′2 < 0.

18.3 Magnetic Moment

Interaction of electron with ~B field

−~µ · ~B ∈ HI (18.3.1)

~µ ≡ g
e

2m
~S. (18.3.2)

g − 2 =

117



19 JWKB (Short Wavelength) Approximation

When the wavefunction ψ varies much more rapidly than the potential V , it is possible to obtain
an approximate solution to the Schrödinger equation up to quadrature (i.e., in terms of explicit
integrals). In fact, this JWKB – more often simply dubbed WKB – scheme finds widespread
application beyond QM: geometric and wave optics, wave solutions in curved spacetimes, etc.

3 Dimensions We begin with the ansatz (given in Sakurai), for real ρ and S,

ψ(t, ~x) =
√
ρ(t, ~x) exp

(
i

~
S(t, ~x)

)
(19.0.1)

where we have restored ~. The key assumption we shall make is that derivatives on S are to be
regarded as being more dominant than derivatives on ρ; that is, the phase exp(iS/~) oscillates
rapidly whereas the amplitude

√
ρ varies slowly. Now, the Schrödinger equation reads

i~∂tψ =

(
− ~2

2m
~∇2 + V

)
ψ. (19.0.2)

That means at leading order in derivatives, we have

i~∂tψ ≈
√
ρi2∂tSe

iS/~ (19.0.3)

−~2~∇2ψ ≈ −~2~∇ ·
(
√
ρ
i

~
~∇SeiS/~

)
≈ −~2√ρ i

2

~2
~∇S · ~∇SeiS/~; (19.0.4)

so that Schrödinger’s equation now becomes the following

∂tS +
(~∇S)2

2m
+ V = 0. (19.0.5)

This is the Hamilton-Jacobi equation in classical mechanics.
Notice all the ~s have canceled out. Because each derivative comes with one power of ~,

JWKB is sometimes called the semi-classical limit, in the sense that ~ can be considered ‘small’.
However, ~ is dimension-ful (namely, [~] is energy × time) and therefore cannot be ‘small’ or
‘large’. Instead, what JWKB does it assumes the phase eiS/~ varies more rapidly than

√
ρ, and

the ~s happen to count the number of derivatives. In any case, we see that if we first re-scale

~y ≡
√

2m~x, (19.0.6)

followed by identifying

d~y(t)

dt
= ∇~yS; (19.0.7)

then we have

∂tS(t, ~y(t)) +∇~yS · ∇~yS = −V (~y) (19.0.8)

∂tS(t, ~y(t)) + ~̇y · ∇~yS = −V (19.0.9)

dS

dt
= −V (19.0.10)
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When V is independent of time, we may seek the stationary states; where ψ ∝ e−iEt. Thus,

S(t, ~x) = W (~x)− E · t; (19.0.11)

and the Hamilton-Jacobi translates into

(~∇W )2 = 2m(E − V ). (19.0.12)

By taking an additional gradient,

U i∂iU
j = −m∂jV (19.0.13)

U i ≡ ∂iW. (19.0.14)

This ‘fixed energy’ JWKB approximation scheme has a relationship with the corresponding ‘fixed
energy’ path integral; see Shankar for a discussion.

One Dimension We turn to one dimension, where – as we shall see shortly – in the
short wavelength limit it is possible to obtain W by integration. However, we wish to do things
more systematically. First, we will revert to setting ~ = 1, re-writing the Schrödinger equation
as

ε2ψ′′ + Uψ = 0, U ≡ 2m(E − V ). (19.0.15)

The ε is not ~, but a fictitious dimensionless parameter that counts derivatives; 1/ε will turn out
to be an integral, for e.g. We will then postulate the following JWKB ansatz:

ψ(x) =
∞∑
`=0

ε`α`(x)eiS(x)/ε. (19.0.16)

Plugging this into our ODE, we obtain

0 =
∞∑
`=0

ε`
(
α`(x)

(
S ′(x)2 − U(x)

)
− i
(
α`−1(x)S ′′(x) + 2S ′(x)α′`−1(x)

)
− α′′`−2(x)

)
(19.0.17)

with the understanding that α−2(x) = α−1(x) = 0. We need to set the coefficients of ε` to zero.
The first two terms (` = 0, 1) give us solutions to S(x) and α0(x).

0 = α0

(
S ′(x)2 − U(x)

)
⇒ S±(x) = σ0 ±

∫ x

dx′
√
U(x′); σ0 = const.

0 = −iε (2α′0(x)S ′(x) + α0(x)S ′′(x)) ⇒ α0(x) =
C0

U(x)1/4

(While the solutions S±(x) contains two possible signs, the ± in S ′ and S ′′ factors out of the
second equation and thus α0 does not have two possible signs.)

Problem 19.1. Recursion relation for higher order terms By considering the ` ≥ 2
terms in eq. (19.0.17), show that there is a recursion relation between α`(x) and α`+1(x). Can
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you use them to deduce the following two linearly independent JWKB solutions?

0 = ε2ψ′′±(x) + U(x)ψ±(x) (19.0.18)

ψ±(x) =
1

U(x)1/4
exp

[
∓ i
ε

∫ x

dx′
√
U(x′)

] ∞∑
`=0

ε`Q(`|±)(x), (19.0.19)

Q(`|±)(x) = ±1

2

∫ x dx′

U(x′)1/4

d2

dx′2

(
Q(`−1|±)(x

′)

U(x′)1/4

)
, Q(0|±)(x) ≡ 1 (19.0.20)

To lowest order

ψ±(x) =
1

U1/4(x)
exp

[
∓ i
ε

∫ x

dx′
√
U [x′]

]
(1 +O[ε]) . (19.0.21)

Note: in these solutions, the
√
· and 4

√
· are positive roots.

JWKB Counts Derivatives In terms of the Q(n)s we see that the JWKB method
is really an approximation that works whenever each derivative d/dx acting on some power
of U(x) yields a smaller quantity, i.e., roughly speaking d lnU(x)/dx ∼ ε � 1; this small
derivative approximation is related to the short wavelength approximation. Also notice from the
exponential exp[iS/ε] ∼ exp[±(i/ε)

∫ √
U ] that the 1/ε indicates an integral (namely, an inverse

derivative). To sum:

The ficticious parameter ε � 1 in the JWKB solution of ε2ψ′′ + Uψ = 0 counts
the number of derivatives; whereas 1/ε is an integral. The JWKB approximation
works well whenever each additional derivative acting on some power of U yields a
smaller and smaller quantity.

Turning Points & Connection Formulas Whenever E > V , we expect an oscillatory
eigensolution; while whenever E < V , we expect a damped one.

ψ(x) ≈ 1
4
√
U

(
C+e

i
ε

∫ x√Udx + C−e
− i
ε

∫ x√Udx
)
, E > V ⇒ U > 0 (19.0.22)

≈ 1
4
√
−U

(
C ′+e

1
ε

∫ x√−Udx + C ′−e
− 1
ε

∫ x√−Udx
)
, E < V ⇒ −U > 0. (19.0.23)

What happens when E ≈ V ? Notice the denominator in the 1/ 4
√
U of the JWKB solution goes

to zero there, and the approximation is likely breaking down. The strategy is then as follows.
Suppose at x = x?, we have E = V (x?), then we may Taylor expand

U(x) = 2m(E − V (x)) = 2m(E − V (x?)− (x− x?)V ′(x?) + . . . ) (19.0.24)

= −2m(x− x?)V ′(x?) +O
(
(x− x?)2

)
. (19.0.25)

Since coordinates are arbitrary, let us re-center our 1D system such that z ≡ (x− x?).

ψ′′(z)− 2mV ′(x?)zψ(z) = 0 (19.0.26)
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The solution to ψ′′ − λzψ = 0 for constant λ are the Airy functions Ai[λ
1
3 z] and Bi[λ

1
3 z], which

in turn are related to Bessel functions. Therefore, to leading order, near x ≈ x?,

ψ(x) ≈ CAAi[ 3
√

2mV ′(x?)(x− x?)] + CBBi[ 3
√

2mV ′(x?)(x− x?)]. (19.0.27)

We will now take their large argument limits so as to join these solutions to the JWKB ones. In
particular, let us record

Ai(z →∞) ∼
exp

(
−2

3
z

3
2

)
2
√
πz1/4

(
1 +O(z−3/2)

)
, (19.0.28)

Bi(z →∞) ∼
exp

(
+2

3
z

3
2

)
√
πz1/4

(
1 +O(z−3/2)

)
. (19.0.29)

and

Ai(z → −∞) (19.0.30)

∼ 1√
π(−z)1/4

(
cos

(
2

3
(−z)

3
2 − π

4

)(
1 +O((−z)−3)

)
+ sin

(
2

3
(−z)

3
2 − π

4

)
O((−z)−3/2)

)
,

Bi(z → −∞) (19.0.31)

∼ 1√
π(−z)1/4

(
− sin

(
2

3
(−z)

3
2 − π

4

)(
1 +O((−z)−3)

)
+ cos

(
2

3
(−z)

3
2 − π

4

)
O((−z)−3/2)

)
.

Case 1: Confining Potential Let us first examine the case where V (x → ±∞) → ∞,
where the potential is strictly confining. For simplicity we will assume E > V for a single region
of space x1 < x < x2. In such a situation we know that the wavefunction must necessarily decay
for x < x1 and x > x2; so

ψ(x ∼ x1) ≈ CAAi[ 3
√

2m|V ′(x1)|(x1 − x)] (19.0.32)

ψ(x / x1) ∼ CA
exp

(
−2

3

√
2m|V ′(x1)|(x1 − x)

3
2

)
2
√
π(2m|V ′(x1)|) 1

12 (x1 − x)
1
4

(19.0.33)

ψ(x ' x1) ∼ CA
cos
(

2
3

√
2m|V ′(x1)|(x− x1)

3
2 − π

4

)
√
π(2m|V ′(x1)|) 1

12 (x− x1)1/4
(19.0.34)

and

ψ(x ∼ x2) ≈ C ′AAi[ 3
√

2m|V ′(x2)|(x− x2)] (19.0.35)

ψ(x / x2) ∼ C ′A

cos
(

2
3

√
2m|V ′(x2)|(x2 − x)

3
2 − π

4

)
√
π(2m|V ′(x2)|) 1

12 (x− x2)1/4
(19.0.36)

ψ(x ' x2) ∼ C ′A

exp
(
−2

3

√
2m|V ′(x2)|(x− x2)

3
2

)
2
√
π(2m|V ′(x2)|) 1

12 (x− x2)
1
4

. (19.0.37)

121



On the other hand, the JWKB solution can be superposed to yield cosine. Remember U =
2m(E − V ); if we start integrating from x1, we may express the solution as

ψJWKB(x1 < x < x2) ≈ χA
cos
(∫ x

x1

√
2m(E − V (x′))dx′ − π

4

)
√
π 4
√

2m(E − V (x))
. (19.0.38)

This guarantees that, near the left turning point x ∼ x1, we may match unto the Airy solution.

ψJWKB(x→ x1) ≈ χA
cos
(

2
3

√
2m|V ′(x1)|(x− x1)

3
2 − π

4

)
√
π 4
√

2mV ′(x1)(x− x1)
(19.0.39)

CA√
π(2m|V ′(x1)|) 1

12

=
χA√

π 4
√

2mV ′(x1)
(19.0.40)

Near the right turning point,

ψJWKB(x→ x2)

≈ χA
cos
((∫ x2

x1
−
∫ x2
x

)
dx′
√

2m(E − V (x′))− π
4

)
√
π 4
√

2m(E − V (x))
(19.0.41)

≈ χA
cos
(∫ x2

x1

√
2m(E − V (x′))dx′ − π

2
− 2

3

√
2mV ′(x2)(x2 − x) + π

4

)
√
π 4
√

2mV ′(x2) · (x2 − x)
(19.0.42)

We now demand that this be matched unto the Airy function solution near x ∼ x2. We have
already fixed χA in terms of CA. We may demand that the integral from x1 to x2 yield the same
cosine or its negative; namely

ψJWKB(x→ x2) = ±χA
cos
(

2
3

√
2mV ′(x2)(x2 − x)− π

4

)
√
π 4
√

2mV ′(x2) · (x2 − x)
(19.0.43)

Then C ′A will be entirely fixed by χA and hence by CA. This remaining constant CA will in turn
be fixed (up to a multiplicative phase factor) by the normalization

∫
R |ψ|

2dx = 1. We therefore
need to impose the following condition∫ x2

x1

√
2m(E − V (x′))dx′ − π

2
= nπ, n = 0, 1, 2, 3, . . . (19.0.44)

This allows the energy E to be determined.

Problem 19.2. Use JWKB to find the approximate energy eigenfunctions and levels of the
Hamiltonian

H =
P 2

2m
+ λX2n, λ > 0, n = 1, 2, 3, . . . . (19.0.45)

Try to obtain the energy levels for arbitrary n. If you can’t, do it for the low lying ns.

Case II: Tunneling
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20 Density Matrices: Schrödinger Picture

Schrödinger picture In a statistical ensemble of quantum states {|αi〉}, with i being the
enumeration label, the statistical average of the quantum expectation value of some operator A
is given by

〈〈A〉〉 ≡
∑
i

pi 〈αi |A|αi〉 ,

where pi corresponds to the probability that a randomly picked system is |αi〉. (In particular,∑
i pi = 1; and, the sum over i does not necessarily equal to the dimensionality DV of the vector

space.) Now, let us define the density operator

ρ̂ ≡
∑
i

pi |αi〉 〈αi| .

Consider

Tr [ρ̂ · A] =

DV∑
`=1

∑
i

pi 〈`| I |αi〉 〈αi |A| `〉

=

DV∑
`=1

∑
i

pi 〈αi |A| `〉 〈`| I |αi〉

=
∑
i

pi 〈αi |A|αi〉 = 〈〈A〉〉.

Therefore the density operator is a central object in computing the statistical average of the
quantum expectation value of some operator A.

Time evolution How does this statistical ensemble evolve with time? In the Schrödinger
picture, if the quantum state at some initial time t′ is |α〉, at the time t > t′ it has evolved to
U [t, t′] |α〉, where if H denotes the Hamiltonian i∂tU [t, t′] = H[t]U [t, t′] and U [t = t′] = I.
Suppose, at time t′, the density operator is

ρ̂0 ≡
∑
i

pi |αi〉 〈αi| .

At time t > t′, we have

ρ̂[t] = U [t, t′]ρ̂0U [t, t′]†.

Taking the time derivative gives us the equation for the density matrix itself.

i∂tρ̂(t) = [H, ρ̂(t)] (20.0.1)

By inserting complete sets of position eigenstates,

Tr [ρ̂[t] · A] =
∑

~x,~x′,~y,~y′

〈~x |U [t, t′]| ~x′〉 〈~x′ |ρ̂0| ~y′〉
〈
~y′
∣∣U [t, t′]†

∣∣ ~y〉 〈~y |A| ~x〉 ,
=

∑
~x,~x′,~y,~y′

〈~x |U [t, t′]| ~x′〉 〈~x′ |ρ̂0| ~y′〉 〈~y |U [t, t′]| ~y′〉? 〈~y |A| ~x〉 .
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We have

〈~x |U [t, t′]| ~x′〉 =

∫ ~x

~x′
D~q exp

[
i

∫ t

t′
L[~q, ~̇q]dτ

]
〈~y |U [t, t′]| ~y′〉? =

∫ ~y

~y′
D~q′ exp

[
−i
∫ t

t′
L[~q′, ~̇q′]dτ ′

]
;

where we are assuming the path integral over the conjugate momentum can be performed to
leave a Lagrangian that depends solely on the positions {~q, ~q′} and velocities {~̇q, ~̇q′}.

〈〈A〉〉[t] =

∫
dD~x

∫
dD~yKin-in [~x, t; ~y, t′] 〈~y |A| ~x〉 ;

with

Kin-in[~x, t; ~y, t′] ≡ 1

iN
δN

δJ+
i1

[t] . . . δJ+
iN

[t]

∣∣∣∣
~J+= ~J−=0

∫
dD~x′

∫
dD~y′

∫ ~x

~x′
D~q+

∫ ~y

~y′
D~q−ρ̂[~x′, ~y′]

× exp

[
i

∫ t

t′

(
L[~q+, ~̇q+]− L[~q−, ~̇q−] + ~J+ · ~q+ − ~J− · ~q−

)
dτ

]
≡ 1

(−i)N
δN

δJ−i1 [t] . . . δJ−iN [t]

∣∣∣∣
~J+= ~J−=0

∫
dD~x′

∫
dD~y′

∫ ~x

~x′
D~q+

∫ ~y

~y′
D~q−ρ̂[~x′, ~y′]

× exp

[
i

∫ t

t′

(
L[~q+, ~̇q+]− L[~q−, ~̇q−] + ~J+ · ~q+ − ~J− · ~q−

)
dτ

]
,

ρ̂[~x′, ~y′] ≡ 〈~x′ |ρ̂0| ~y′〉 , ~̇q ≡ ∂τ~q.

Statistical ensemble of position correlations Let A be a product of position operators.

Tr
[
ρ̂[t] · qi1 . . . qiN

]
=

∫
dD~x

∫
dD~yδ(D) [~y − ~x] ~xi1 . . . ~xiNKin-in[~y, t; ~x, t′]

=

∫
dD~x~xi1 . . . ~xiNKin-in[~x, t; ~x, t′];

where

Kin-in[~x, t; ~x, t′] ≡ 1

iN
δN

δJ+
i1

[t] . . . δJ+
iN

[t]

∣∣∣∣
~J+= ~J−=0

∫
dD~x′

∫
dD~y′

∫ ~x

~x′
D~q+

∫ ~x

~y′
D~q−ρ̂[~x′, ~y′]

× exp

[
i

∫ t

t′

(
L[~q+, ~̇q+]− L[~q−, ~̇q−] + ~J+ · ~q+ − ~J− · ~q−

)
dτ

]
≡ 1

(−i)N
δN

δJ−i1 [t] . . . δJ−iN [t]

∣∣∣∣
~J+= ~J−=0

∫
dD~x′

∫
dD~y′

∫ ~x

~x′
D~q+

∫ ~x

~y′
D~q−ρ̂[~x′, ~y′]

× exp

[
i

∫ t

t′

(
L[~q+, ~̇q+]− L[~q−, ~̇q−] + ~J+ · ~q+ − ~J− · ~q−

)
dτ

]
.

At this point, we may perform a change of variables,

~q± → ~q±cl + ~ξ±;
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where the “classical” portion ~q±cl obeys the boundary conditions

~q+
cl [t
′] = ~x′, ~q+

cl [t] = ~x

~q−cl [t
′] = ~y′, ~q−cl [t] = ~x

and the quantum fluctuations ~ξ obey

~ξ±[t] = ~ξ±[t′] = ~0.

Heisenberg Picture Expressed in terms of the initial density operator

ρ̂0 ≡
∑
ψ

pψ |ψ[t′]〉 〈ψ[t′]| , (20.0.2)

we have

〈〈O〉〉 = Tr [Osρ̂[t]] = Tr
[
OsU [t, t′]ρ̂0U

†[t, t′]
]

(20.0.3)

= Tr
[
U †[t, t′]OsU [t, t′]ρ̂0

]
≡ Tr [OH [t]ρ̂0] ; (20.0.4)

where we have identified the relationship between Heisenberg picture operator and its Schrödinger
counterpart as

OH [t] ≡ U †[t, t′]OsU [t, t′]. (20.0.5)

Example: SHO

20.1 Open Systems

Motivation If the Schrödinger equation is obeyed, as we have seen

ρ(t) = U(t, t′)ρ(t′)U(t, t′)†. (20.1.1)

If the time evolution operator U is governed by a time dependent Hamiltonian that fluctuates in
time much more quickly than the density operator itself, we may obtain a time averaged version
of the above equation:

〈i |ρ(t)| j〉 = 〈i |U(t, t′)| a〉 〈b |U(t, t′)†| j〉 〈a |ρ(t′)| b〉 (20.1.2)

≡ K a′b′

ij (t, t′) 〈a |ρ(t′)| b〉 . (20.1.3)

Open Quantum Systems More generally, open quantum systems have density matrices
obeying the same sort of equation. For simplicity we shall assume the statistical properties of
K are time independent, so that K = K(t− t′).

〈i |ρ(t)| j〉 = K a′b′

ij (t− t′) 〈a |ρ(t′)| b〉 . (20.1.4)

If ρ is to be Hermitian,

〈j |ρ(t)| i〉 = K∗ a′b′

ij (t− t′) 〈b |ρ(t′)| a〉 (20.1.5)

= K ba
ji (t− t′) 〈b |ρ(t′)| a〉 . (20.1.6)
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In other words,

K∗ a′b′

ij (t− t′) = K ba
ji (t− t′). (20.1.7)

If we demand Tr [ρ] = 1 for all times,

1 =
∑
i

K a′b′

ii (t− t′) 〈a |ρ(t′)| b〉 . (20.1.8)

Since δab 〈a |ρ(t′)| b〉 = 1 and ρ is otherwise arbitrary,∑
i

K a′b′

ii (t− t′) = δab. (20.1.9)

If we view ia and jb as a pair of collective indices, eq. (20.1.7) may be viewed as the statement
that K is Hermitian. That in turn implies, K itself must go as K ∼

∑
λ |λ〉 〈λ|, where the

eigenvalues {λ} are real.

K a′b′

ij (t− t′) =
∑

I

λIM [I] ai M [I]†
b

j (20.1.10)

The eigenvalues {λI} and eigen-matrices M [I] both depend on time through the difference t− t′.
Furthermore, these matrices must be orthonormal

Tr
[
M [I]M [J]†

]
= δIJ. (20.1.11)

and in terms of them eq. (20.1.9) reads∑
i

K a′b′

ii (t− t′) =
∑

I

λIδ
i
jM [I] jb M [I] ai (20.1.12)

= (20.1.13)

When t = t′, we need to recover ρ(t) = ρ(t′). This in turn implies

K a′b′

ij (0) = δ ai δ
b
j . (20.1.14)

This implies we may choose the first eigen-system at t = t′ to be

M [1] ai =
δ ai√
D
, λ1 = D; (20.1.15)

where D is the dimension of the space of matrices {M [I] ai }.

20.2 Properties of Initial Density Operator

In this section, we wish to study the properties of the initial density operator

ρ[t′] ≡
∑
i

pi |αi〉 〈αi| . (20.2.1)
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Firstly, since pi refers to the statistical probability, they must lie between 0 and 1. Therefore
ρ[t′] must be Hermitian; and as we shall soon see, its eigenvalues must also lie between 0 and 1.

Next, while {|αi〉} can be assumed to be unit norm, they are not necessarily orthogonal since
they are distinct but otherwise arbitrary. We first recognize that Tr [ρ] is total probability, and
since total probability must be unity,

Tr [ρ[t′]] = 1. (20.2.2)

Choose an orthonormal basis {|i〉} and perform the trace:

Tr [ρ[t′]] =

DV∑
j=1

∑
i

pi 〈j|αi〉 〈αi| j〉 (20.2.3)

=

DV∑
j=1

∑
i

pi 〈αi| j〉 〈j|αi〉 =
∑
i

pi 〈αi|αi〉 (20.2.4)

=
∑
i

pi = 1. (20.2.5)

Because {|αi〉} are not necessarily orthogonal, they are not necessarily eigenvectors of ρ. How-
ever, the eigenvalues of ρ[t′] must necessarily be positive. Since ρ[t′] is Hermitian, it must be
diagonalizable. Let ρ |λ〉 = λ |λ〉 and assume {|λ〉} are unit norm. Then,

λ = 〈λ |ρ[t′]|λ〉 (20.2.6)

=
∑
i

pi 〈λ|αi〉 〈αi|λ〉 =
∑
i

pi| 〈λ|αi〉 |2 (20.2.7)

≤
∑
i

pi 〈λ|λ〉 〈αi|αi〉 =
∑
i

pi = 1. (20.2.8)

Since λ =
∑

i pi| 〈λ|αi〉 |2 and since probabilities must be non-negative, we must therefore con-
clude: the eigenvalues of ρ[t′] must lie between 0 and 1.

0 ≤ λ ≤ 1 (20.2.9)

This also implies

0 ≤ . . . λ4 ≤ λ3 ≤ λ2 ≤ λ ≤ 1. (20.2.10)

Equality is achieved iff λ = 0 or 1. That is, if n and m are a pair of distinct positive integers,
with n < m:

λn = λm ⇔ λn(1− λm−n) = 0. (20.2.11)

We may write the initial density operator through its spectral decomposition, where only the
non-zero eigenvalues are involved:

ρ[t′] =
∑
λ 6=0

λ |λ〉 〈λ| . (20.2.12)
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The square of the initial density operator is

ρ[t′]2 =
∑
λ 6=0

λ2 |λ〉 〈λ| . (20.2.13)

The purity is defined as the trace of ρ[t′]2.

Tr
[
ρ[t′]2

]
=
∑
λ6=0

λ2. (20.2.14)

Suppose all the eigenvalues obey λ2 < λ then we must have – upon term-by-term comparison –

Tr
[
ρ[t′]2

]
< Tr [ρ[t′]] = 1. (20.2.15)

Suppose one eigenvalue λ′ obeys λ′2 = λ′ = 1. Then since Tr [ρ[t′]] =
∑

λ λ = 1 +
∑

λ 6=λ′ λ = 1,
and since all the λ lie between 0 and 1, there must in fact be only λ′ in the sum. Similar
reasoning will tell us, it is not possible to have two or more λ′ that obey λ′2 = λ′ = 1.

Purity of the initial density operator, defined as Tr [ρ[t′]2], is unity iff ρ[t′] =
|ψ〉 〈ψ| describes to a pure state.
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21 Scattering Theory

Microscopic (quantum) systems are usually studied by scattering experiments. For instance,
Rutherford discovered the structure of (gold) atoms, that they have a heavy central nucleus, by
scattering alpha particles off a gold foil. In this section we shall study scattering theory itself.

Setup We will assume that the object of study is the potential V generated by some
isolated quantum system; for e.g., the electric potential generated by a nucleus. The Schrödinger
equation for a particle scattering off such a potential is(

i∂t −
~P 2

2m

)
|ψ〉 = V ( ~X) |ψ〉 . (21.0.1)

We will assume that V ( ~X) does not depend on time t and only on space ~X, so we may focus
only on positive energy stationary states – namely, replace

|ψ(t)〉 → e−iEt |ψ〉 , E > 0; (21.0.2)

and obtain (
2mE − ~P 2

)
|ψ〉 = 2mV ( ~X) |ψ〉 . (21.0.3)

This allows the Schrödinger equation to be converted into an integral equation:

|ψ〉 = |ψ0〉+
(

2mE − ~P 2
)−1

(2mV (~x)ψ(~x)) ; (21.0.4)

where |ψ0〉 is, for now, an arbitrary homogeneous solution to(
2mE − ~P 2

)
|ψ0〉 = 0 (21.0.5)(

2mE − ~P 2
)∫

R3

d3~k

(2π)3

∣∣∣~k〉 〈~k∣∣∣ψ0

〉
= 0. (21.0.6)

That tells us 〈
~k
∣∣∣ψ0

〉
= (2π)3δ(3)(~k − ~q)ψ̃0(~q)ei~q·~x, ~q2 = 2mE. (21.0.7)

The inverse of the differential operator q2 + ~∇2 may be obtained via a Fourier transform:

G̃(~x− ~x′; q2) ≡
〈
~x

∣∣∣∣ 1

q2 + ~P 2

∣∣∣∣ ~x′〉
=

∫
R3

d3~k

(2π)3

∫
R3

d3~k′

(2π)3
〈~x|~k

〉〈
~k

∣∣∣∣ 1

q2 + ~P 2

∣∣∣∣~k′〉 〈~k′∣∣∣ ~x′〉
=

∫
R3

d3~k

(2π)3

ei
~k·(~x−~x′)

q2 − ~k2
, q ≡

√
2mE = |~q|. (21.0.8)
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Problem 21.1. Inverse Verify that eq. (21.0.8) is indeed the inverse of (q2 + ~∇2); namely,(
q2 + ~∇2

~x

)
G̃(~x− ~x′; q2) =

(
q2 + ~∇2

~x′

)
G̃(~x− ~x′; q2) = δ(3)(~x− ~x′). (21.0.9)

This means we may write eq. (21.0.4) as

|ψ〉 = |ψ0〉+
2m

q2 + ~P 2

∫
d3~x′ |~x′〉

〈
~x′
∣∣∣V ( ~X)

∣∣∣ψ〉 (21.0.10)

ψ(~x) = ψ0(~x) + 2m

∫
R3

d3~x′G̃(~x− ~x′; q2 = 2mE)V (~x′)ψ(~x′), (21.0.11)

because, if we apply 2mE + ~∇2 on both sides, we recover the Schrödinger equation (21.0.3).
Notice this is very much like solving an inhomogeneous ODE; the general solution consists of
the homogeneous plus the particular solution.

The primary remaining issue is to compute G̃ itself. First show that the 3D integral in eq.
(21.0.8) can be reduced to a 1D one:

G̃(~x− ~x′; q2) =
1

R

∫ ∞
−∞

dk · k
(2π)2

sin (kR)

q2 − k2
, R ≡ |~x− ~x′|. (21.0.12)

We shall see that there are (at least) two possible solutions:

G̃±(qR) = −e
±iqR

4πR
. (21.0.13)

There is an ambiguity here. When integrating over k, there are two singularities at k = ±q.
This means we really need to choose a contour on the complex k plane to skirt them.

Let us choose to skirt the pole at k = −q by going ‘under’ it; and the k = +q by going above
it. Keeping in mind R > 0,

G̃(~x− ~x′; q2) =
1

2iR

∫ ∞
−∞

dk · k
(2π)2

eikR − e−ikR

(q + k)(q − k)
(21.0.14)

=
2πi

2iR(2π)2

(
(+)(−q)e

−iqR

2q
− (−)(+q)

e−iqR

2q

)
(21.0.15)

= −e
−iqR

4πR
. (21.0.16)

We may check this result by noticing that, if we set q = 0, G̃ = −(4πR)−1. From the integral
representation,

G̃(~x− ~x′; q2 = 0) = − 1

R

∫ ∞
−∞

dk

(2π)2

sin (kR)

k
(21.0.17)

= − 1

2πR

∫ ∞
−∞

dk

2πi

eik − e−ik

2k
(21.0.18)

= − 1

4πR
. (21.0.19)
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Note that, if G̃ is a solution to (q2 + ~∇2)G̃ = δ(3), then for q2 real, so is G̃∗; that means we have
shown that both expressions in eq. (21.0.13) are indeed solutions.

At this point, we may gather from eq. (21.0.11),

ψ(~x) = ei~q·~x − 2m

∫
R3

d3~x′
e±iq|~x−~x

′|

4π|~x− ~x′|
V (~x′)ψ(~x′). (21.0.20)

If we put back the e−iEt and assume the V is localized enough that we may take the far zone
limit, namely when

r ≡ |~x| � |~x′| ≡ r′ and qr � 1. (21.0.21)

From the Taylor expansion

|~x− ~x′| ≈ |~x| − ~x′ · r̂ + . . .

≈ r

(
1− ~x′ · r̂

r
+O

(
(r′/r)2

))
(21.0.22)

we have

e±iq|~x−~x
′|

4π|~x− ~x′|
≈ e±iq(r−~x

′·r̂+... )

4πr

(
1 +O

(
r′

r

))
. (21.0.23)

Therefore, in the far zone,

e−iEtψ(~x)→ ei(~q·~x−Et) +
e±iq(r∓(E/q)t)

r
f (21.0.24)

f(qr̂) ≡ −2m

4π

∫
R3

d3~x′e−iqr̂·~x
′
V (~x′)ψ(~x′) (21.0.25)

This far zone expression in eq. (21.0.24) allows the following interpretation. The first term

on the RHS corresponds to a plane wave. Next, by choosing G̃ = e+iqR/(4πR), we obtain for
the second term on the RHS an outgoing spherical wave propagating to infinity. Whereas, by
choosing G̃ = e−iqR/(4πR), we obtain for the second term on the RHS an ingoing spherical wave.

For scattering theory, we shall therefore choose G̃ = e+iqR/(4πR), so that we may assert, the
homogeneous solution (1st term on RHS) is the ‘incoming’ plane wave, which then scatters off
the central potential V , then proceeds to propagate outwards to infinity (as described by the
2nd term on the RHS).

ψ(~x) = ei~q·~x − 2m

∫
R3

d3~x′
eiq|~x−~x

′|

4π|~x− ~x′|
V (~x′)ψ(~x′). (21.0.26)

Before moving on, let us provide a more involved but more systematic derivation of eq. (21.0.24).
Firstly,

e±iq|~x−~x
′|

4π|~x− ~x′|
= ±

∞∑
`′=0

iqj`′(qr<)h
(1
2)
`′ (qr>)

`′∑
m′=−`′

Y m′

`′ (x̂)Y m′
`′ (x̂′) (21.0.27)
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h
(1)
` (x� 1)→ (−i)`+1 e

ix

x

(
1 +O(x−1)

)
(21.0.28)

Moreover,

e±i
~k·~x = 4π

∞∑
`′=0

(±i)`′j`′(kr)
`′∑

m′=−`′
Y m′

`′ (x̂)Y m′
`′ (k̂). (21.0.29)

That means in the far zone, i.e., keeping only 1/r,

eiq|~x−~x
′|

4π|~x− ~x′|
→

∞∑
`′=0

iqj`′(qr
′)(−i)`′+1 e

iqr

qr

`′∑
m′=−`′

Y m′

`′ (x̂)Y m′
`′ (x̂′) (21.0.30)

=
eiqr

4πr

∞∑
`′=0

4π(−i)`′j`′(qr′)
`′∑

m′=−`′
Y m′

`′ (x̂)Y m′
`′ (x̂′) (21.0.31)

=
eiq(r−x̂·~x

′)

4πr
(21.0.32)

Cross Sections & Probability Current One of the key observables in scattering exper-
iments is the differential cross section.

Consider a parallel beam of particles zipping down an accelerator tunnel. If L denotes flux
of particles (number of particles per unit time per unit area) across some infinitesimal cross
sectional area dσ, so that the number of particles per unit time crossing it is dN = Ldσ,
then the differential cross section is defined by the number of particles scattered into a given
infinitesimal solid angle dΩ divided by the luminosity L:

dσ

dΩ
≡ Number of outgoing particles per solid angle

Number of incident particles per unit time per unit area
(21.0.33)

=
1

L

dN

dΩ
. (21.0.34)

This definition is consistent with how cross section is actually measured: L is set by the pa-
rameters of the accelerator setup, whereas dN/dΩ involves counting particles. Moreover, in
our quantum mechanical context, the flux of particles can be computed through the probability
current ~J , defined as

~J(t, ~x) ≡ i

2m

(
ψ~∇ψ∗ − ψ∗~∇ψ

)
. (21.0.35)

Problem 21.2. Probability Conservation Law To check that ~J is indeed a probability
current, verify using the Schrödinger equation its conservation law:

∂t|ψ|2 = −~∇ · ~J, (21.0.36)

which states that the rate of change of probability |ψ|2 within an infinitesimal volume must be
equal to the negative rate of flow out the said volume. That is, if there is a net flow out of the
volume, there must be a decrease in |ψ|2; whereas if there is a note flow into the volume, there
must be an increase.
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We may interpret ~J · n̂ as the number of particles following through the surface normal to
the unit vector n̂ per unit time per unit area; moreover, recall that r2dΩ is the area element of
a sphere of radius r. Therefore, in the far zone qr � 1,

dσ

dΩ
≡ Number of outgoing particles per solid angle

Number of incident particles per unit time per unit area
(21.0.37)

=
limr→∞ r

2( ~Joutgoing · r̂)
~Jincident · q̂

(21.0.38)

We can compute the numerator and denominator as follows

lim
r→∞

r2r̂ · ~Joutgoing = lim
r→∞

r2

2m
lim
r→∞

r̂ ·
(
i
eiqr

r
f ~∇

(
e−iqr

r
f ∗
)

+ c.c.

)
(21.0.39)

q̂ · ~Jincoming =
q̂

2m
·
(
iei~q·~x~∇e−i~q·~x + c.c.

)
. (21.0.40)

Problem 21.3. Show that eq. (21.0.38) yields

dσ

dΩ
= |f |2. (21.0.41)

Note that f depends on r̂; recall eq. (21.0.24). The r →∞ limit is important here.

Born Approximation Apart from allowing us to choose the outgoing boundary con-
ditions readily, converting the Schrödinger PDE into an integral equation allows us to find
approximate solutions via repeated iteration. That is, we suppose the 2nd term on the RHS is
‘small’. Then, we may iterate the RHS into itself:

ψ(~x) = ei~q·~x − 2m

∫
R3

d3~x′
eiq|~x−~x

′|

4π|~x− ~x′|
V (~x′)ei~q·~x

′
+O(V 2). (21.0.42)

We have suppressed the O(V 2) term that contains ψ(~x). If that term is small relative to the
O(V 1) term, however, we may discard the former and obtain the first Born approximation
solution to ψ.

ψ(~x) ≈ ei~q·~x − 2m

∫
R3

d3~x′
eiq|~x−~x

′|

4π|~x− ~x′|
V (~x′)ei~q·~x

′
(21.0.43)

|~q| =
√

2mE = q. (21.0.44)

At this point, upon taking the far zone limit,

ψ(qr � 1, x̂)→ ei~q·~x +
eiqr

r
f(x̂) (21.0.45)

f(~q, qx̂) = −2m

4π

∫
R3

d3~x′V (~x′)eiq(q̂−x̂)·~x′ (21.0.46)

= −2m

∫
R3

d3~x′
∞∑
`=0

V m
` (r′)Y m

` (x̂′) (21.0.47)
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×
∞∑
`′=0

(−i)`′j`′(qr′)
`′∑

m′=−`′
Y m′

`′ (x̂)Y m′
`′ (x̂′) (21.0.48)

×
∞∑
`′′=0

i`
′′
j`′′(qr

′)
`′′∑

m′′=−`′′
Y m′′

`′′ (x̂′)Y m′′
`′′ (q̂) (21.0.49)

V (~x′) ≡
∞∑
`=0

V m
` (r′)Y m

` (x̂′). (21.0.50)

Spherically Symmetric V For a spherically symmetric central potential, namely V (~x) =
V (r),

f(~q, qx̂) = −2m

4π

∫
R3

d3~x′ei(~q−qr̂)·~x
′
V (r′) (21.0.51)

= −2m

∫ ∞
0

dr′r′2V (r′)
∞∑
`′=0

j`′(qr
′)2

`′∑
m′=−`′

Y m′

`′ (x̂′)Y m′
`′ (q̂). (21.0.52)

We can also do the first integral directly, by reducing it to a 1D one.

f(~q, qx̂) = −m
∫ ∞

0

dr′r′2
∫ +1

−1

ei|~q−qr̂|r
′cV (r′) (21.0.53)

= −m
∫ ∞

0

dr′r′2V (r′)
ei|~q−qr̂|r

′ − e−i|~q−qr̂|r′

i|~q − qr̂|r′
(21.0.54)

= −2m

∫ ∞
0

dr′r′V (r′)
sin
(√

2qr′
√

1− q̂ · x̂
)

√
2q
√

1− q̂ · x̂
(21.0.55)

Note that, if we define cos θ ≡ q̂ · x̂,

√
2
√

1− q̂ · x̂ =
√

4 sin2(θ/2) = 2 sin(θ/2). (21.0.56)

Consider, as Sakurai does, the Yukawa potential

V = U0
e−µr

r
. (21.0.57)

Within the first Born approximation,

f(~q, qx̂) = −2mU0Im

∫ ∞
0

dr′r′
e−µr

′

r′
ei2qr

′ sin(θ/2)

2q sin(θ/2)
(21.0.58)

= − mU0

q sin(θ/2)
Im

∫ ∞
0

dr′e−µr
′+i2qr′ sin(θ/2) (21.0.59)

= − mU0

q sin(θ/2)

2q sin
(
θ
2

)
µ2 − 2q2 cos(θ) + 2q2

= − 2mU0

µ2 − 2q2 cos(θ) + 2q2
(21.0.60)
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The scattering cross section for scattering off a Coulomb potential can be gotten by setting
µ→ 0.

dσ[Coulomb]

dΩ
=

(2mU0)2

16q4 sin4(θ/2)
(21.0.61)

This is what Rutherford found.

Problem 21.4. Dipole-Yukawa Potential Consider the scattering off the following po-
tential

V = U0
e−µr

r2
Y 0

1 (θ, φ). (21.0.62)

Find the differential cross section within the first Born approximation in terms of spherical
harmonics:

dσ

dΩ
=
∑
`1,m1

∑
`2,m2

g`2,m2

`1,m1
· Y m1

`1
(r̂)Y m2

`2
(q̂). (21.0.63)

Can you take the µ→ 0 limit?
Hint: This problem involves the addition of angular momentum. Try to push the analysis as

far as you can.

22 Acknowledgments

A Classical Mechanics of a Point Particle: Review

In this section, I shall provide a review of the classical mechanics of point particles.
Lagrangian Mechanics Let us start by assuming the variational principle, which is

encapsulated within the Lagrangian L. We shall suppose L only depends on the trajectory ~q(t)
and its velocity ~̇q(t), but not on its higher time derivatives.

The extremum of the action leads to the Euler-Lagrange equations

∂L

∂qi
=

d

dt

∂L

∂q̇i
. (A.0.1)

Hamiltonian Dynamics The momentum conjugate to ~q is defined as

pi ≡
∂L(~q, ~̇q)

∂q̇i
. (A.0.2)

This eq. (A.0.2) will usually allow us to solve ~̇q in terms of ~q and ~p. In turn, the Hamiltonian
is defined as

H(~q, ~p) = piq̇
i(~q, ~p)− L (~q, ~p) . (A.0.3)
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Note that, since we have switched variables from (~q, ~̇q) to (~q, ~p), we need to understand how the
partial derivatives in eq. (A.0.1) are altered. Viewed as a function of (~q, ~̇q),

δH(~q, ~̇q) = δpiq̇
i + piδq̇

i −

(
∂L(~q, ~̇q)

∂qi

)
~̇q

δqi −

(
∂L(~q, ~̇q)

∂q̇i

)
~q

δq̇i

= δpiq̇
i + piδq̇

i − d

dt

(
∂L(~q, ~̇q)

∂q̇i

)
~̇q

δqi − piδq̇i

= δpiq̇
i − ṗiδqi (A.0.4)

Whereas, when viewed as a function of (~q, ~p),

δH(~q, ~p) =

(
∂H

∂qi

)
~p

δqi +

(
∂H

∂pi

)
~q

δpi. (A.0.5)

Comparing the two expressions then hands us Hamilton’s equations:

q̇i =
∂H(~q, ~p)

∂pi
, (A.0.6)

ṗi = −∂H(~q, ~p)

∂qi
. (A.0.7)

Poisson brackets & Hamiltonian flow The Poisson bracket between two functions (f, g)
of (~q, ~p) is defined as

{f, g}PB ≡
∂f(~q, ~p)

∂qi
∂g(~q, ~p)

∂pi
− ∂f(~q, ~p)

∂pi

∂g(~q, ~p)

∂qi
. (A.0.8)

We now see that, using these Poisson brackets, that the Hamilton ‘generates’ time evolution:

{f,H}PB =
∂f

∂qi
∂H

∂pi
− ∂f

∂pi
∂H

∂qi

=
∂f

∂qi
q̇i +

∂f

∂pi
ṗi =

df (~q(t), ~p(t))

dt
. (A.0.9)

Spatial translations & Momentum flow Using the Poisson brackets, we may also show
that momentum generates spatial displacements in that

{f, p`}PB =
∂f

∂qi
∂p`
∂pi
− ∂f

∂pi
∂p`
∂qi

=
∂f

∂q`
. (A.0.10)

Electromagnetism of Point Particles In Minkowski spacetime, the relativistic action
for a point electric charge e is given by

S =

∫
dt
(
−m
√

1− ~v2 + e ~A · ~v − eφ
)
. (A.0.11)
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Here, m is its mass; ~v ≡ d~q/dt its spatial velocity; ~A is the vector potential; and φ ≡ A0 is the
electric potential (and also the zeroth component of the vector potential). In the non-relativistic
limit, we have

S =

∫
dt
(
−m+ LEM +O(v4)

)
, (A.0.12)

where the Lagrangian is

LEM ≡
m

2
~v2 + e ~A · ~v − eφ. (A.0.13)

Problem A.1. Electromagnetic Hamiltonian Using the definition in eq. (A.0.2),
namely

~p ≡ ∂LEM

∂~v
, (A.0.14)

show that

~v =
1

m

(
~p− e ~A

)
. (A.0.15)

From this result, show that the HamiltonianHEM associated with the electromagnetic Lagrangian
in eq. (A.0.13) is

HEM =
1

2m

(
~p− e ~A

)2

+ eφ. (A.0.16)

Eq. (A.0.16) is often the starting point of electromagnetism in the quantum mechanics.

We may check the consistency of the classical Hamiltonian in eq. (A.0.16) by computing its
Hamilton’s equations. Applying eq. (A.0.6) recovers eq. (A.0.15); while employing eq. (A.0.7)
yields

~̇p = −∂HEM

∂~q
= − 1

m
(pi − eAi) (−e)~∇~qAi − e~∇~qφ. (A.0.17)

Utilizing eq. (A.0.15) once again,

~̇p = evi~∇~qAi − e~∇~qφ (A.0.18)

d

dt

(
m~v + e ~A(t, ~q)

)
= evi~∇~qA

i − e~∇~qφ. (A.0.19)

Now, d ~A/dt = ∂t ~A+ va∂a ~A. Hence, we arrive at

mv̇i = e
(
vm∂iA

m − vm∂mAi − ∂tAi − ∂iφ
)
. (A.0.20)

If we remember the relationship between the electric and magnetic fields with that of the vector
potential, namely

Ei = −∂iφ− ∂tAi and Bi = εimn∂mA
n, (A.0.21)

we recover the familiar Lorentz force law:

mv̇i = e
(
Ei + (~v × ~B)i

)
. (A.0.22)
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Problem A.2. Use the result

εijkεkmn = δi[mδ
j
n] (A.0.23)

to demonstrate that

(~v × ~B)i = vm∂iA
m − vm∂mAi. (A.0.24)

This connects eq. (A.0.20) to eq. (A.0.22).

B Some Identities

For linear operators A, B, and C,

[AB,C] = A[B,C] + [A,C]B (B.0.1)

[A,B]† = −[A†, B†]. (B.0.2)

C Last update: March 15, 2022
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