QM Spring 2019: HW 4

1. Consider the 2×2 matrix Hamiltonian

$$H = H_0 + \epsilon \hat{n}^i \sigma^i, \tag{0.0.1}$$

where σ^i is the *i*th Pauli matrix and

$$H_0 = \begin{bmatrix} \bar{E} + \delta & 0\\ 0 & \bar{E} - \delta \end{bmatrix}, \qquad (0.0.2)$$

$$\widehat{n}(\phi) = (\cos\phi, \sin\phi, 0)^{\mathrm{T}}. \qquad (0.0.3)$$

- Assume $\delta > 0$ is fixed and use non-degenerate perturbation theory to solve the eigenvalues of H up to order ϵ .
- Set $\delta = 0$. Use degenerate perturbation theory to compute the eigenvalues of H up to order ϵ .
- Diagonalize H exactly. Using these exact eigenvalues of H: take the limit $\epsilon \to 0$ assuming δ is fixed and compare the result of taking $\delta \to 0$ followed by expanding the result up to order ϵ . Comment on the difference.
- 2. Weinberg 5.1.
- 3. Weinberg 5.2.
- 4. Weinberg 5.4.
- 5. Verify that the states given in Weinberg eq. (5.3.10) do indeed diagonalize $\delta H = e\vec{X} \cdot \vec{E}$ from the first order Stark effect.
- 6. From L. Pauling and E. B. Wilson Consider the system consisting of two valence electrons (Helium, for example); with potential given by

$$V = -\frac{Ze^2}{|\vec{x}_1|} - \frac{Ze^2}{|\vec{x}_2|} + \frac{e^2}{|\vec{x}_1 - \vec{x}_2|}.$$
 (0.0.4)

Neglecting the $e^2/|\vec{x}_1 - \vec{x}_2|$ term for the moment, solve the ground state eigenket and eigen-energy of the Hamiltonian

$$H_0 = \frac{\vec{P}_1^2 + \vec{P}_2^2}{2m_e} - \frac{Ze^2}{|\vec{x}_1|} - \frac{Ze^2}{|\vec{x}_2|}.$$
 (0.0.5)

Now treat the $e^2/|\vec{x}_1 - \vec{x}_2|$ term as a perturbation – i.e., define

$$\delta_1 H \equiv \frac{e^2}{|\vec{x}_1 - \vec{x}_2|}.$$
(0.0.6)

Compute the first order corrections to the ground state energy of Helium in this framework. Hint: You may need the expansion

$$\frac{1}{|\vec{x}_1 - \vec{x}_2|} = \frac{4\pi}{r_>} \sum_{\ell=0}^{+\infty} \frac{(r_)^\ell}{2\ell + 1} \sum_{m=-\ell}^{+\ell} Y_\ell^m(\widehat{x}_1) \overline{Y_\ell^m(\widehat{x}_2)},\tag{0.0.7}$$

$$r_{>} \equiv \max(|\vec{x}_{1}|, |\vec{x}_{2}|), \qquad r_{<} \equiv \min(|\vec{x}_{1}|, |\vec{x}_{2}|).$$
 (0.0.8)