QM Spring 2019: HW 1

- 1. Weinberg 4.7.
- 2. Weinberg 4.8.
- 3. Weinberg 4.9.
- 4. If Y_{ℓ}^m is a spherical harmonic and if $|\vec{X}|^{\ell}Y_{\ell}^m(\widehat{X})$ is viewed as an operator built out of the position operator \vec{X} , explain why $Y_{\ell}^m(\widehat{X})$ is a tensor operator. Use the Wigner-Eckart theorem to evaluate the following solid angle integral on the 2-sphere in terms of Clebsch-Gordan coefficients:

$$\int_{\mathbb{S}^2} \overline{Y_{\ell_1}^{m_1}(\widehat{x})} Y_{\ell_2}^{m_2}(\widehat{x}) Y_{\ell_3}^{m_3}(\widehat{x}) d\Omega_{\widehat{x}}.$$
(0.0.1)

5. If J^i and V^i are the Cartesian components of, respectively, the angular momentum and some vector operator, namely Weinberg eq. (4.4.5) is obeyed – verify that his equations (4.4.7) and (4.4.8) are satisfied by the operators defined in eq. (4.4.6). Explain why, this in turn allows us to identify

$$O_1^{\pm 1} \equiv V^{\pm}$$
 and $O_1^0 \equiv V^3$. (0.0.2)

6. Consider two spin-half particles in a bound system, such that the total Hamiltonian can be written in terms of their reduced mass μ ; relative coordinate \vec{X} ; relative orbital angular momentum \vec{L} ; their individual and total spin operators \vec{S}' , \vec{S}'' and $\vec{S} \equiv \vec{S}' + \vec{S}''$; as well as the total angular momentum $\vec{J} \equiv \vec{L} + \vec{S}$:

$$H = -\frac{1}{2\mu} \left\{ \frac{1}{r^2} \partial_r \left(r^2 \partial_r \cdot \right) - \frac{\vec{L}^2}{r^2} \right\} + V_0(r) + V_1(r) \left(\vec{S}' \cdot \vec{S}'' \right) + V_3(r) \left(\vec{L} \cdot \vec{S} \right), \qquad (0.0.3)$$

$$r \equiv |\vec{x}|. \tag{0.0.4}$$

Use the separation-of-variables technique – i.e., assume the wave function is a function of \vec{x} multiplied by some spin-dependent state – and write down the ordinary differential equation for the energy eigenstate with total angular momentum j, total orbital momentum ℓ and total spin σ .¹ Hint: First explain why

$$\vec{S}' \cdot \vec{S}'' = \frac{1}{2} \left(\vec{S}^2 - \vec{S}'^2 - \vec{S}''^2 \right), \tag{0.0.5}$$

$$\vec{L} \cdot \vec{S} = \frac{1}{2} \left(\vec{J}^2 - \vec{L}^2 - \vec{S}^2 \right). \tag{0.0.6}$$

¹This problem can be found in at least one quantum mechanics text – which shall be revealed in the solutions – so make sure you explain your steps carefully!