QM Spring 2020: In-Class Presentation

1. Finite Size Effects of the Nucleus The hydrogen-like atom is usually described
by the Hamiltonian
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The 1/r form of the potential indicates we are treating the nucleus as a point charge Z|e|.
Suppose we wish to capture the effects on atomic energy levels due to the internal structure
of the nucleus. For simplicity, let us assume the nucleus is a perfect sphere; but allow its
charge density p(r, 0, ¢) to be arbitrary — we may hence decompose
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Use perturbation theory to approximate the first order shift in the Bohr energy levels
E, =—m(Ze*)?/(2n?) due to these {p]'}.

2. Inter-Electron Interactions Consider an atom with Z protons and Z electrons.
The interactions between nucleus and the electrons may be modeled as the usual
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where p;, and Z) are the momentum and position of the kth electron. Let us now attempt
to include the mutual interactions of the electrons
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For an arbitrary V' assume the un-perturbed energy eiegen wave functions take the form
(T4l €. m) = Re(r)Y;" (6, ). (0.0.6)

Can you express the first order shift in energies due to H; in terms of these Ry(r)? Calculate
these shifts for £ = 0, 1, 2 for the usual Coulomb potential
Ze?
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Finally, for such a Coulombic potential, can you use the variational method to estimate
the ground state energy of such a Z-proton/electron system?



