Quantum Mechanics II: HW 1

1. Analytical Methods; Problems 4.79, 4.80, 4.82, 4.96, 4.97, 4.98.
2. QM Notes: Problems 9.1 and 9.2.
3. Weinberg 4.3, 4.4, 4.5, 4.6, 4.7, 4.9
4. If Y_{ℓ}^{m} is a spherical harmonic and if $|\vec{X}|^{\ell} Y_{\ell}^{m}(\widehat{X})$ is viewed as an operator built out of the position operator \vec{X}, use the Wigner-Eckart theorem to evaluate the following solid angle integral on the $2-$ sphere in terms of Clebsch-Gordan coefficients:

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} \overline{Y_{\ell_{1}}^{m_{1}}(\widehat{x})} Y_{\ell_{2}}^{m_{2}}(\widehat{x}) Y_{\ell_{3}}^{m_{3}}(\widehat{x}) \mathrm{d} \Omega_{\widehat{x}} \tag{0.0.1}
\end{equation*}
$$

5. Consider two spin-half particles in a bound system, such that the total Hamiltonian can be written in terms of their reduced mass μ; relative coordinate \vec{X}; relative orbital angular momentum \vec{L}; their individual and total spin operators $\vec{S}^{\prime}, \overrightarrow{S^{\prime \prime}}$ and $\vec{S} \equiv \overrightarrow{S^{\prime}}+\overrightarrow{S^{\prime \prime}}$; as well as the total angular momentum $\vec{J} \equiv \vec{L}+\vec{S}$:

$$
\begin{align*}
H \psi & =-\frac{1}{2 \mu}\left\{\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \psi\right)-\frac{\vec{L}^{2}}{r^{2}} \psi\right\}+\left\{V_{0}(r)+V_{1}(r)\left(\vec{S}^{\prime} \cdot \vec{S}^{\prime \prime}\right)+V_{3}(r)(\vec{L} \cdot \vec{S})\right\} \psi \\
r & \equiv|\vec{x}| \tag{0.0.2}
\end{align*}
$$

Use the separation-of-variables technique - i.e., assume the wave function is a function of \vec{x} multiplied by some spin-dependent state - and write down the ordinary differential equation for the energy eigenstate with total angular momentum j, total orbital momentum ℓ and total spin $\sigma{ }^{\top}$ Hint: First explain why

$$
\begin{align*}
\vec{S}^{\prime} \cdot \vec{S}^{\prime \prime} & =\frac{1}{2}\left(\vec{S}^{2}-\vec{S}^{\prime 2}-\vec{S}^{\prime \prime 2}\right), \tag{0.0.3}\\
\vec{L} \cdot \vec{S} & =\frac{1}{2}\left(\vec{J}^{2}-\vec{L}^{2}-\vec{S}^{2}\right) . \tag{0.0.4}
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ This problem can be found in at least one quantum mechanics text - which shall be revealed in the solutions - so make sure you explain your steps carefully!

