QFT HW 4

1. Consider a real scalar field φ with Lagrangian density $\mathcal{L}(\varphi, \partial \varphi)$. Show that the conserved angular momentum current $J^{\mu\alpha\beta}$ generated by a small Lorentz transformation

$$x^{\mu} \to x^{\mu} + \Omega^{\mu}_{,\nu} x^{\nu} \tag{0.0.1}$$

is given by

$$J^{\mu\alpha\beta} = T^{\mu[\alpha} x^{\beta]} = T^{\mu\alpha} x^{\beta} - T^{\mu\beta} x^{\alpha}; \tag{0.0.2}$$

where $T^{\mu\nu}$ is the "canonical" stress tensor

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)} \partial^{\nu}\varphi - \eta^{\mu\nu}\mathcal{L}. \tag{0.0.3}$$

(Hint: Remember the generator $\Omega^{\mu\nu}$ is anti-symmetric.)

From the conservation of the current, namely $\partial_{\mu}J^{\mu\alpha\beta}=0$ explain why the stress tensor is symmetric: $T^{\alpha\beta}=T^{\beta\alpha}$. For higher rank tensors, the angular momentum current would have additional terms that can be interpreted to arise from their internal angular momentum/spin; this will turn out to spoil this symmetry property. \Box

- 2. Peskin & Schroeder 2.1
- 3. Peskin & Schroeder 2.2
- 4. Peskin & Schroeder 2.3
- 5. An alternate means to canonical quantization that emphasizes the Lorentz covariance nature of quantum fields is to demand that their (anti-)commutators yield the difference between the classical retarded and advanced Green's functions. For a massless scalar field with $\mathcal{L} = (1/2)(\partial \varphi)^2$, for instance, we have

$$i[\varphi(x), \varphi(x')] = G^{+}(x - x') - G^{-}(x - x'),$$
 (0.0.4)

$$G^{\pm}(z) = -\int_{-\infty \pm i0^{+}}^{+\infty \pm i0^{+}} \frac{d\omega}{2\pi} \int_{\mathbb{R}^{d-1}} \frac{d^{d-1}\vec{k}}{(2\pi)^{d-1}} \frac{e^{-i\omega z^{0}} e^{i\vec{k}\cdot\vec{z}}}{\omega^{2} - \vec{k}^{2}}.$$
 (0.0.5)

¹It is physically important for the stress energy tensor to be symmetric. For it is otherwise possible to exert a finite torque on an infinitesimal volume; see Schutz's "First Course in General Relativity" for a discussion.

Note that:

$$\partial^2 G^{\pm}(x) = \delta^{(4)}(x). \tag{0.0.6}$$

Show that this leads to the canonical equal time commutation relations

$$[\varphi(t, \vec{x}), \Pi(t, \vec{x}')] = [\varphi(t, \vec{x}), \dot{\varphi}(t, \vec{x}')] = i\delta^{(d-1)}(\vec{x} - \vec{x}'). \tag{0.0.7}$$

Hint: You do not need to evaluate the entire Fourier integral, but you need to apply the residue theorem to the ω integral before computing the equal time commutator.

6. Vacuum Wave Functional Argue that the vacuum wavefunctional of the massive scalar QFT is proportional to a Gaussian:

$$\langle \varphi | 0 \rangle = C \exp \left(-\frac{1}{2} \int_{\mathbb{R}^{d-1}} \varphi(\vec{k})^* \sqrt{\vec{k}^2 + m^2} \varphi(\vec{k}) \frac{\mathrm{d}^{d-1} \vec{k}}{(2\pi)^{d-1}} \right).$$
 (0.0.8)

The C is a constant. Hint: Focus on a given \vec{k} -mode. What is its ground state wave function? The wave functional is the product of all k-wave functions.

7. Massless Spin-1 Photons and Spin-2 Gravitons Consider a scalar-vector decomposition of the photon vector potential A_i and electric current J_i :

$$A_i = \partial_i \alpha + \alpha_i, \qquad \partial_i \alpha_i = 0, \tag{0.0.9}$$

$$A_{i} = \partial_{i}\alpha + \alpha_{i}, \qquad \partial_{i}\alpha_{i} = 0,$$

$$J_{i} = \partial_{i}\Gamma + \Gamma_{i}, \qquad \partial_{i}\Gamma_{i} = 0.$$

$$(0.0.9)$$

Explain why the conservation of current $\partial^{\mu} J_{\mu} = 0$ implies

$$\dot{J}^0 = \partial_i \partial_i \Gamma. \tag{0.0.11}$$

Next, recall the gauge-invariant vector potential variables

$$\Phi \equiv A_0 - \dot{\alpha} \quad \text{and} \quad A_i^{\mathrm{T}} \equiv \alpha_i.$$
(0.0.12)

Show that the electromagnetic action

$$S_{\rm EM} \equiv \int d^d x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} J^{\mu} \right)$$
 (0.0.13)

can be written in the manifestly gauge-invariant form

$$S_{\rm EM} \equiv \int d^d x \left(\frac{1}{2} \partial_\alpha \alpha_j \partial^\alpha \alpha_j + \alpha_i \Gamma_i + \frac{1}{2} \partial_i \Phi \partial_i \Phi - \Phi J^0 \right). \tag{0.0.14}$$

(Assume it is alright to integrate-by-parts freely.) Now, let us quantize the dynamical massless spin-1 photon α_i in the (3+1)D vacuum, i.e., where $J_{\mu} = 0$.

$$\alpha_i(x) = \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2k}} \sum_{s=1}^2 \left\{ a_{\vec{k}}^s \epsilon_i^s e^{-ik \cdot x} + (a_{\vec{k}}^s)^{\dagger} (\epsilon_i^s)^* e^{+ik \cdot x} \right\}, \qquad k \equiv |\vec{k}|. \tag{0.0.15}$$

The $\{\epsilon_i^s|s=1,2\}$ are the two transverse orthonormal polarization vectors of the photon: $k^i\epsilon_i^s=0$. Whereas $k_\mu k^\mu=0$ and the ladder operators obey the simple harmonic algebra

$$\left[a_{\vec{k}}^r, (a_{\vec{k}'}^s)^{\dagger}\right] = (2\pi)^3 \delta^{rs} \delta^{(3)}(\vec{k} - \vec{k}'). \tag{0.0.16}$$

Show that, for $x^{\mu} \equiv (t, \vec{x})$ and $x'^{\mu} \equiv (t', \vec{x}')$,

$$i \left[\alpha_i(x), \alpha_j(x') \right] = \operatorname{sgn}(t - t') \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} P_{ij}(\vec{k}) \frac{\sin(k(t - t'))}{k} e^{i\vec{k} \cdot (\vec{x} - \vec{x}')},$$
 (0.0.17)

$$P_{ij}(\vec{k}) \equiv \delta_{ij} - \frac{k_i k_j}{\vec{k}^2}.$$

$$(0.0.18)$$

Next, we turn to the massless spin-2 graviton h_{ij}^{TT} , which is transverse and traceless:

$$\partial_i h_{ij}^{\rm TT} = 0 = \delta^{ij} h_{ij}^{\rm TT}. \tag{0.0.19}$$

Its quantum operator admits the expansion, in (3+1)D,

$$h_{ij}^{\rm TT}(x) = \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2k}} \sum_{s=1}^2 \left\{ a_{\vec{k}}^s \epsilon_{ij}^s e^{-ik \cdot x} + (a_{\vec{k}}^s)^{\dagger} (\epsilon_{ij}^s)^* e^{+ik \cdot x} \right\}, \qquad k \equiv |\vec{k}|. \tag{0.0.20}$$

The transverse traceless conditions in Fourier space reads

$$k^i \epsilon_{ij}^s = 0 = \delta^{ij} \epsilon_{ij}^s. \tag{0.0.21}$$

Imposing the simple harmonic algebra

$$\left[a_{\vec{k}}^r, (a_{\vec{k}'}^s)^{\dagger}\right] = (2\pi)^3 \delta^{rs} \delta^{(3)}(\vec{k} - \vec{k}'). \tag{0.0.22}$$

demonstrate that

$$i\left[h_{ij}^{\rm TT}(x), h_{mn}^{\rm TT}(x')\right] = \operatorname{sgn}(t - t') \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} P_{ijmn}(\vec{k}) \frac{\sin(k(t - t'))}{k} e^{i\vec{k}\cdot(\vec{x} - \vec{x}')}, \tag{0.0.23}$$

$$P_{ijmn}(\vec{k}) \equiv \frac{1}{2} \left(P_{im}(\vec{k}) P_{jn}(\vec{k}) + P_{in}(\vec{k}) P_{jm}(\vec{k}) - P_{ij}(\vec{k}) P_{mn}(\vec{k}) \right). \tag{0.0.24}$$

Hints: Recall that the (Fourier space) transverse polarization vector can be obtained by projection:

$$\varepsilon_i^{\mathrm{T}} = P_{ij}\varepsilon_j; \tag{0.0.25}$$

and likewise for the (Fourier space) TT gravitation polarization tensor:

$$\varepsilon_{ij}^{\text{TT}} = \frac{1}{2} \left(P_{im}(\vec{k}) P_{jn}(\vec{k}) + P_{in}(\vec{k}) P_{jm}(\vec{k}) - P_{ij}(\vec{k}) P_{mn}(\vec{k}) \right) \varepsilon_{mn}. \tag{0.0.26}$$

²In a weakly curved spacetime $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, with $|h_{\mu\nu}| \ll 1$, the $h_{ij}^{\rm TT}$ is the transverse-traceless part of $h_{\mu\nu}$.

This implies, when one encounters a sum over orthonormal polarization vectors such as

$$\sum_{s} \epsilon_i^{(s)T} (\varepsilon_j^{(s)T})^* = P_{ia} P_{jb} \sum_{s} \epsilon_a^{(s)} (\varepsilon_b^{(s)})^*; \qquad (0.0.27)$$

even though the sum only runs over the two orthonormal polarizations perpendicular to k_i , it can be extended to include $\epsilon_i^{(3)} = \hat{k}_i$ since it is annihilated by P_{ij} anyway. This observation may then be invoked to then apply the completeness relation. Similar remarks apply for the graviton case.

8. Gaussian & Grassmannian Integrals Compute the integrals involving real variables x^i and symmetric matrix A_{ij} :

$$\langle x^{i_1} x^{i_2} \rangle \equiv \int_{\mathbb{R}} \exp\left(i x^i A_{ij} x^j\right) x^{i_1} x^{i_2} d^D \vec{x}, \qquad (0.0.28)$$

$$\langle x^{i_1} x^{i_2} x^{i_3} \rangle \equiv \int_{\mathbb{R}} \exp\left(i x^i A_{ij} x^j\right) x^{i_1} x^{i_2} x^{i_3} d^D \vec{x}, \qquad (0.0.29)$$

$$\langle x^{i_1} x^{i_2} x^{i_3} x^{i_4} \rangle \equiv \int_{\mathbb{R}} \exp\left(i x^i A_{ij} x^j\right) x^{i_1} x^{i_2} x^{i_3} x^{i_4} d^D \vec{x}.$$
 (0.0.30)

Explain how to obtain the general even-point function $\langle x^{i_1} \dots x^{i_{2n}} \rangle$ and odd-point function $\langle x^{i_1} \dots x^{i_{2n+1}} \rangle$.

Next, compute the integrals involving complex Grassmann variables θ^i and Hermitian matrix H_{ij} :

$$\langle \theta^{i_1} \overline{\theta^{i_2}} \rangle \equiv \int_{\mathbb{R}} \exp\left(i\overline{\theta^i} H_{ij} \theta^j\right) \theta^{i_1} \overline{\theta^{i_2}} d^D \vec{\theta} d^D \vec{\theta}^*,$$
 (0.0.31)

$$\langle \theta^{i_1} \overline{\theta^{i_2}} \theta^{i_3} \overline{\theta^{i_4}} \rangle \equiv \int_{\mathbb{R}} \exp\left(i \overline{\theta^i} H_{ij} \theta^j\right) \theta^{i_1} \overline{\theta^{i_2}} \theta^{i_3} \overline{\theta^{i_4}} d^D \vec{\theta} d^D \vec{\theta}^*. \tag{0.0.32}$$

Also evaluate the integrals involving only θ or only its complex conjugate $\overline{\theta} \equiv \underline{\theta}^*$, namely $\langle \theta^{i_1} \dots \theta^{i_N} \rangle$ and $\langle \overline{\theta^{i_1}} \dots \overline{\theta^{i_N}} \rangle$. Can you explain how to get the general function $\langle \theta^{i_1} \overline{\theta^{j_1}} \dots \theta^{i_n} \overline{\theta^{j_n}} \rangle$? This and the above real variable case is the discrete analog of