QFT HW 4

1. Consider a real scalar field ¢ with Lagrangian density £(y,dp). Show that the conserved
angular momentum current J**# generated by a small Lorentz transformation

at — at 4+ QF " (0.0.1)
is given by
JheB — ulag bl — pragB T“ﬁxo‘; (()02)

where TH is the “canonical” stress tensor
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(Hint: Remember the generator Q*” is anti-symmetric. )

From the conservation of the current, namely 9,J*® = 0 explain why the stress ten-
sor is symmetric: 7% = T8« For higher rank tensors, the angular momentum current
would have additional terms that can be interpreted to arise from their internal angular
momentum /spin; this will turn out to spoil this symmetry propertyﬂ O

2. Peskin & Schroeder 2.1
3. Peskin & Schroeder 2.2
4. Peskin & Schroeder 2.3

5. An alternate means to canonical quantization that emphasizes the Lorentz covariance
nature of quantum fields is to demand that their (anti-)commutators yield the difference
between the classical retarded and advanced Green’s functions. For a massless scalar field
with £ = (1/2)(d¢p)?, for instance, we have

ilp(z), p(a")] = GT(z —2') = G (z — o), (0.0.4)
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Tt is physically important for the stress energy tensor to be symmetric. For it is otherwise possible to exert
a finite torque on an infinitesimal volume; see Schutz’s “First Course in General Relativity” for a discussion.



Note that:
PGE(z) = 6W(x). (0.0.6)
Show that this leads to the canonical equal time commutation relations
[o(t, %), 11(t, 7)) = [p(t, D), p(t, )] = 16D (T — 7). (0.0.7)

Hint: You do not need to evaluate the entire Fourier integral, but you need to apply the
residue theorem to the w integral before computing the equal time commutator. ]

. Vacuum Wave Functional Argue that the vacuum wavefunctional of the massive
scalar QFT is proportional to a Gaussian:

(0] 0) = C exp <_% /R R GRE m%p(/%%) . (0.0.8)

The C is a constant. Hint: Focus on a given k-mode. What is its ground state wave
function? The wave functional is the product of all k—wave functions.

. Massless Spin-1 Photons and Spin-2 Gravitons Consider a scalar-vector decom-
position of the photon vector potential A; and electric current J;:

Az‘ = @-a + Q;, 81‘041‘ = 0, (()09)

Explain why the conservation of current 0*J, = 0 implies
J = 0,0,T. (0.0.11)

Next, recall the gauge-invariant vector potential variables
d=A)—a and Al = o (0.0.12)

Show that the electromagnetic action
1
Seum = / d%x (—ZFWFW - AMJ“> (0.0.13)
can be written in the manifestly gauge-invariant form
— d 1 « 1 0
SEM = d%x §8aaj8 a; + OéiFi -+ 581@81(19 —&J . (0014)

(Assume it is alright to integrate-by-parts freely.) Now, let us quantize the dynamical
massless spin-1 photon «; in the (34+1)D vacuum, i.e., where J, = 0.
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The {€f|s = 1,2} are the two transverse orthonormal polarization vectors of the photon:
k'e; = 0. Whereas k,k" = 0 and the ladder operators obey the simple harmonic algebra
(a2)1] = (2m)36763) (k — ). (0.0.16)
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Show that, for z# = (¢,7) and 2/ = (¢, '),

i), o (2")] = sgn(t —t') / (diP- ~(E)w&g'(f—f’), (0.0.17)

(0.0.18)

Next, we turn to the massless spin-2 graviton h E|Wh1(3h is transverse and traceless:
TT _ o _ sijpTT
Oihy;w =0=10"h,; . (0.0.19)

[ts quantum operator admits the expansion, in (3+1)D,

TT
hij (z) =

2
Z atese M 4 (a2) (e5) et} k=|k| (0.0.20)
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The transverse traceless conditions in Fourier space reads
k'el; =0 =d"¢;. (0.0.21)

Imposing the simple harmonic algebra

[ar, (az,)T] = (2m)*676@ (k — ). (0.0.22)
demonstrate that
Pk Losin(k(t—t) .
i (W5 (), b (2)] = sgn(t — ') / ngmn(k)welk'@*ﬂ, (0.0.23)
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Pjon () = 5 (Pon(B)PF) + Pas(B) Pon(F) = Py (B) Prn(B)) - (0.0.24)
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Hints: Recall that the (Fourier space) transverse polarization vector can be obtained by
projection:

= Pej; (0.0.25)

and likewise for the (Fourier space) TT gravitation polarization tensor:

e = % (Pim(E)Pjn(E) t Pin(K) Py () - Rj(E)Pmn(E)) Emn- (0.0.26)

2In a weakly curved spacetime Gy = Nuw + hyw, with |y, | < 1, the hiTjT is the transverse-traceless part of
Py -



This implies, when one encounters a sum over orthonormal polarization vectors such as

ST ) = PuPy Y ) (0.027)
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even though the sum only runs over the two orthonormal polarizations perpendicular to
ki, it can be extended to include 653) = //;l since it is annihilated by Fj; anyway. This
observation may then be invoked to then apply the completeness relation. Similar remarks
apply for the graviton case.

. Gaussian & Grassmannian Integrals Compute the integrals involving real vari-
ables ' and symmetric matrix A;;:

(z"2") = / exp (ix' Ayja?) 2" 2”d" (0.0.28)
R

(x"x22") = / exp (ix' Ajjz’) 2 a2z, (0.0.29)
R

("2 = / exp (iz' Ajja’) a" a2z d . (0.0.30)
R

Explain how to obtain the general even-point function (z’ ...z%") and odd-point function
(xi ... gim+1),

Next, compute the integrals involving complex Grassmann variables #° and Hermitian
matrix H,Lj
(016i2) = / exp <i@Hz~j0j> 0" 62d”gdP 6", (0.0.31)
R
(91 GGy = / exp (WHUGJ') 011020791 dP P (0.0.32)
R
Also evaluate the integrals involving only 6 or only its complex conjugate § = 0%, namely

(0 ...6') and (71 ... @in). Can you explain how to get the general function (#1671 . . . §nGin)?
This and the above real variable case is the discrete analog of O



