
QFT HW 4

1. Consider a real scalar field ϕ with Lagrangian density L(ϕ, ∂ϕ). Show that the conserved
angular momentum current Jµαβ generated by a small Lorentz transformation

xµ → xµ + Ωµ
νx

ν (0.0.1)

is given by

Jµαβ = T µ[αxβ] = T µαxβ − T µβxα; (0.0.2)

where T µν is the “canonical” stress tensor

T µν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL. (0.0.3)

(Hint: Remember the generator Ωµν is anti-symmetric.)

From the conservation of the current, namely ∂µJ
µαβ = 0 explain why the stress ten-

sor is symmetric: Tαβ = T βα. For higher rank tensors, the angular momentum current
would have additional terms that can be interpreted to arise from their internal angular
momentum/spin; this will turn out to spoil this symmetry property.1

2. Peskin & Schroeder 2.1

3. Peskin & Schroeder 2.2

4. Peskin & Schroeder 2.3

5. An alternate means to canonical quantization that emphasizes the Lorentz covariance
nature of quantum fields is to demand that their (anti-)commutators yield the difference
between the classical retarded and advanced Green’s functions. For a massless scalar field
with L = (1/2)(∂ϕ)2, for instance, we have

i [ϕ(x), ϕ(x′)] = G+(x− x′)−G−(x− x′), (0.0.4)

G±(z) = −
∫ +∞±i0+

−∞±i0+

dω

2π

∫
Rd−1

dd−1~k

(2π)d−1
e−iωz

0
ei
~k·~z

ω2 − ~k2
. (0.0.5)

1It is physically important for the stress energy tensor to be symmetric. For it is otherwise possible to exert
a finite torque on an infinitesimal volume; see Schutz’s “First Course in General Relativity” for a discussion.
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Note that:

∂2G±(x) = δ(4)(x). (0.0.6)

Show that this leads to the canonical equal time commutation relations

[ϕ(t, ~x),Π(t, ~x′)] = [ϕ(t, ~x), ϕ̇(t, ~x′)] = iδ(d−1) (~x− ~x′) . (0.0.7)

Hint: You do not need to evaluate the entire Fourier integral, but you need to apply the
residue theorem to the ω integral before computing the equal time commutator.

6. Vacuum Wave Functional Argue that the vacuum wavefunctional of the massive
scalar QFT is proportional to a Gaussian:

〈ϕ| 0〉 = C exp

(
−1

2

∫
Rd−1

ϕ(~k)∗
√
~k2 +m2ϕ(~k)

dd−1~k

(2π)d−1

)
. (0.0.8)

The C is a constant. Hint: Focus on a given ~k-mode. What is its ground state wave
function? The wave functional is the product of all ~k−wave functions.

7. Massless Spin-1 Photons and Spin-2 Gravitons Consider a scalar-vector decom-
position of the photon vector potential Ai and electric current Ji:

Ai = ∂iα + αi, ∂iαi = 0, (0.0.9)

Ji = ∂iΓ + Γi, ∂iΓi = 0. (0.0.10)

Explain why the conservation of current ∂µJµ = 0 implies

J̇0 = ∂i∂iΓ. (0.0.11)

Next, recall the gauge-invariant vector potential variables

Φ ≡ A0 − α̇ and AT
i ≡ αi. (0.0.12)

Show that the electromagnetic action

SEM ≡
∫

ddx

(
−1

4
FµνF

µν − AµJµ
)

(0.0.13)

can be written in the manifestly gauge-invariant form

SEM ≡
∫

ddx

(
1

2
∂ααj∂

ααj + αiΓi +
1

2
∂iΦ∂iΦ− ΦJ0

)
. (0.0.14)

(Assume it is alright to integrate-by-parts freely.) Now, let us quantize the dynamical
massless spin-1 photon αi in the (3+1)D vacuum, i.e., where Jµ = 0.

αi(x) =

∫
d3~k

(2π)3
1√
2k

2∑
s=1

{
as~kε

s
ie
−ik·x + (as~k)

†(εsi )
∗e+ik·x

}
, k ≡ |~k|. (0.0.15)
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The {εsi |s = 1, 2} are the two transverse orthonormal polarization vectors of the photon:
kiεsi = 0. Whereas kµk

µ = 0 and the ladder operators obey the simple harmonic algebra[
ar~k, (a

s
~k′

)†
]

= (2π)3δrsδ(3)(~k − ~k′). (0.0.16)

Show that, for xµ ≡ (t, ~x) and x′µ ≡ (t′, ~x′),

i [αi(x), αj(x
′)] = sgn(t− t′)

∫
d3~k

(2π)3
Pij(~k)

sin(k(t− t′))
k

ei
~k·(~x−~x′), (0.0.17)

Pij(~k) ≡ δij −
kikj
~k2

. (0.0.18)

Next, we turn to the massless spin-2 graviton hTT
ij ,2 which is transverse and traceless:

∂ih
TT
ij = 0 = δijhTT

ij . (0.0.19)

Its quantum operator admits the expansion, in (3+1)D,

hTT
ij (x) =

∫
d3~k

(2π)3
1√
2k

2∑
s=1

{
as~kε

s
ije
−ik·x + (as~k)

†(εsij)
∗e+ik·x

}
, k ≡ |~k|. (0.0.20)

The transverse traceless conditions in Fourier space reads

kiεsij = 0 = δijεsij. (0.0.21)

Imposing the simple harmonic algebra[
ar~k, (a

s
~k′

)†
]

= (2π)3δrsδ(3)(~k − ~k′). (0.0.22)

demonstrate that

i
[
hTT
ij (x), hTT

mn(x′)
]

= sgn(t− t′)
∫

d3~k

(2π)3
Pijmn(~k)

sin(k(t− t′))
k

ei
~k·(~x−~x′), (0.0.23)

Pijmn(~k) ≡ 1

2

(
Pim(~k)Pjn(~k) + Pin(~k)Pjm(~k)− Pij(~k)Pmn(~k)

)
. (0.0.24)

Hints: Recall that the (Fourier space) transverse polarization vector can be obtained by
projection:

εTi = Pijεj; (0.0.25)

and likewise for the (Fourier space) TT gravitation polarization tensor:

εTT
ij =

1

2

(
Pim(~k)Pjn(~k) + Pin(~k)Pjm(~k)− Pij(~k)Pmn(~k)

)
εmn. (0.0.26)

2In a weakly curved spacetime gµν = ηµν + hµν , with |hµν | � 1, the hTT
ij is the transverse-traceless part of

hµν .
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This implies, when one encounters a sum over orthonormal polarization vectors such as∑
s

ε
(s)T
i (ε

(s)T
j )∗ = PiaPjb

∑
s

ε(s)a (ε
(s)
b )∗; (0.0.27)

even though the sum only runs over the two orthonormal polarizations perpendicular to
ki, it can be extended to include ε

(3)
i = k̂i since it is annihilated by Pij anyway. This

observation may then be invoked to then apply the completeness relation. Similar remarks
apply for the graviton case.

8. Gaussian & Grassmannian Integrals Compute the integrals involving real vari-
ables xi and symmetric matrix Aij:

〈xi1xi2〉 ≡
∫
R

exp
(
ixiAijx

j
)
xi1xi2dD~x, (0.0.28)

〈xi1xi2xi3〉 ≡
∫
R

exp
(
ixiAijx

j
)
xi1xi2xi3dD~x, (0.0.29)

〈xi1xi2xi3xi4〉 ≡
∫
R

exp
(
ixiAijx

j
)
xi1xi2xi3xi4dD~x. (0.0.30)

Explain how to obtain the general even-point function 〈xi1 . . . xi2n〉 and odd-point function
〈xi1 . . . xi2n+1〉.
Next, compute the integrals involving complex Grassmann variables θi and Hermitian
matrix Hij:

〈θi1θi2〉 ≡
∫
R

exp
(
iθiHijθ

j
)
θi1θi2dD~θdD~θ∗, (0.0.31)

〈θi1θi2θi3θi4〉 ≡
∫
R

exp
(
iθiHijθ

j
)
θi1θi2θi3θi4dD~θdD~θ∗. (0.0.32)

Also evaluate the integrals involving only θ or only its complex conjugate θ ≡ θ∗, namely
〈θi1 . . . θiN 〉 and 〈θi1 . . . θiN 〉. Can you explain how to get the general function 〈θi1θj1 . . . θinθjn〉?
This and the above real variable case is the discrete analog of
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