
QFT: Problems for Final Presentation

Problem 1. QFT in a “Square Well” & Casimir Effect Consider the massless m = 0
free scalar field in (1+1)-dimensional Minkowski, but within a finite spatial domain of length L:

xµ ≡ (t ∈ R, 0 ≤ x ≤ L). (1)

Demand that the field vanishes at x = 0, L. Compute the vacuum expectation value of the
energy density ρ, defined as:

ρ ≡
〈
vac

∣∣: T 00 :
∣∣ vac〉 , (2)

T 00 ≡ 1

2
φ̇2 +

1

2
(∂xφ)

2. (3)

What is the total energy E inside the square well, as a function of L? What is ∂E/∂L? The
latter can be interpreted as an effective force experienced by the walls of the square well as a
result of quantum fluctuations. (Bonus: What are the pressure and momentum densities?)

Problem 2. de Sitter Power Spectrum de Sitter spacetime in ‘flat slicing’ coordinates
is described by the metric

ds2 = a(η)2
(
dη2 − dx⃗2

)
, (4)

a[η] ≡ −(Hη)−1, η ∈ (−∞, 0). (5)

In this problem, compute in this geometry the one point function〈
vac

∣∣∣φ̃(η, k⃗)∣∣∣ vac〉 (6)

and the power spectrum of a massless scalar field〈
vac

∣∣∣φ̃(η, k⃗)φ̃(η, k⃗′)∣∣∣ vac〉 . (7)

Consider their late time limits η → 0.
Hints: If

√
|g| is the square root of the determinant of the metric gµν = diag[1,−1,−1,−1]/(Hη)2

and gµν = diag[1,−1,−1,−1](Hη)2 is its inverse, the scalar field obeys the wave equation

□φ =
∂µ

(√
|g|gµν∂νφ

)
√

|g|
= 0. (8)
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The spatial translation invariance means we may Fourier decompose our scalar field in plane
waves. Specifically, if we first re-scale

φ(η, x⃗) =
ϕ(η, x⃗)

a(η)
, (9)

followed by examining a single Fourier mode

ϕ(η, x⃗) = f(ξ)eik⃗·x⃗, (10)

where ξ ≡ kη and k ≡ |⃗k|; show that f obeys

f ′′(ξ) +

(
1− 2

ξ2

)
f(ξ) = 0. (11)

You should find the two linearly independent solutions to be

f±(ξ) ≡
e±iξ√
2

(
±i+ 1

ξ

)
. (12)

Choose your mode functions for φ such that, as η → −∞, the positive energy solutions approach
those of Minkowski spacetime. Moreover, to quantize such a system, you should be able to verify
its associated Lagrangian is

Lf ≡
1

2
f ′(ξ)2 +

f(ξ)f ′(ξ)

ξ
+

1

2
f(ξ)2

(
1

ξ2
− 1

)
. (13)

These vacuum fluctuations – if inflationary cosmologists are right – may be responsible for gen-
erating inhomogeneities in the very early universe, from which all of cosmic structure (galaxy
clusters, etc.) were produced. Comment on how the calculations apply to primordial gravita-
tional waves in particular.

Problem 3. Fractional Fermion Number on Scalar Kinks in (1+1)D In this problem
we will explore, in (1+1)D with Cartesian coordinates xµ ≡ (t, x), how the number operator
of a fermion ψ can acquire a fractional eigenvalue in the presence of a background static ‘kink’
solution to the scalar field ϕ. We start with the total Lagrangian

L ≡ Lϕ + Lψ, (14)

Lϕ ≡
1

2
∂µϕ∂

µϕ− λ

4

(
ϕ2 − η2

)2
, (15)

Lψ ≡ ψ
(
i/∂ − gϕ

)
ψ. (16)

Note that the Dirac spinor is a 2−component object in (1 + 1)D. Explain why the following
choice is a valid one for the γµ matrices. Denoting the Pauli matrices by {σi|i = 1, 2, 3}, define

γ0 ≡ σ3 and γ1 ≡ iσ1. (17)
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Scalar Solutions First focus on the scalar sector. Verify that the following are static
solutions. You may be able to actually derive them; try plotting the potential.

ϕV = ±η (18)

ϕK = ±η tanh
(
η
√
λ/2 · x

)
. (19)

Fermion Solutions Next, solve the Dirac equation(
i/∂ − gϕV

)
ψ = 0. (20)

And, derive the zero energy solutions to(
i/∂ − gϕK

)
ψ = 0. (21)

Fractional Fermion Number Quantize the Dirac fermion in eq. (21) and explain why
the existence of zero energy solutions on a kink background ϕK leads to half-integer eigenvalues
for the fermion number operator.
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