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There is a Gauss’ law for magnetism, just as there is one for the electric field, except there
are no magnetic charges in Nature:

~∇ · ~B = 0. (0.0.1)

(Compare with the electric case: ~∇ · ~E = ρ/ε0.) The integral version can be stated as:

The flux of the magnetic field through any closed surface is zero.

When the physical system is static, so that we may assume the time derivative of the electric
field is zero, we have Ampere’s law:

~∇× ~B = µ0
~J, (0.0.2)

where ~J is the current density of the system. The integral version of this same law goes as
follows. Consider performing a line integral of the magnetic field

∮
~B ·d~s around a closed loop in

3D space. Pick any 2D surface D whose boundary ∂D is this loop; for example, if the loop is a
circle lying on the xy plane, the surface can simply be the interior of this circle or the hemisphere
whose equator is the circle. Next, define a unit normal n̂ to this 2D surface in accordance to
the right hand rule – when looking ‘down’ on the surface (i.e., the n̂ is pointing at you) the line
integral will be in the counter-clockwise fashion. Then, Ampere’s law states∮

∂D

~B · d~s = µ0

∮
D

~J · d2 ~A = µ0

∮
D

(
~J · n̂

)
d2A. (0.0.3)

The
∮
D

(
~J · n̂

)
d2A is of course the total current flowing through the surface.

Ampere’s law: The line integral of the magnetic field around a closed loop C
is equal to µ0 times the total electric current flowing through any surface whose
boundary is C.

Note that Ampere’s law would be inconsistent if charge were not conserved.
Infinite Straight Wire We are now ready to use the magnetic Gauss’ law and Ampere’s

law to deduce the magnetic field around an infinite straight current

~I = Iẑ (0.0.4)
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running along the z axis, i.e., (0, 0, z ∈ R). This is a system that is invariant under rotation
about and translation along the z−axis; so it is advantageous to employ the cylindrical coordinate
system

(x, y, z) = (r cosφ, r sinφ, z). (0.0.5)

Furthermore, because of the axial and translation symmetry, the ~B field can only depend on r.
At any point in space, the magnetic field would have radial Br, azimuthal Bφ and z components
Bz:

~B = Br(r)r̂ +Bφ(r)φ̂+Bz(r)ẑ. (0.0.6)

We will now argue that the only non-zero component is the azimuthal one.
First consider a closed Ampere loop that runs parallel the z axis at r = r1 from z = z1 to

z = z2, then radially outwards to r = r2, then anti-parallel to z, then radially inwards from
(z = z1, r = r2) to (z = z1, r = r1). Along the radial segments, ~B · d~s = ±Brdr, where the +
sign is for the outward pointing (top) segment and the − sign is for the inward pointing one. For
a fixed r, these two infinitesimal contributions to the line integral cancel. Therefore the entire
inward plus outward radial segments do not contribute to the line integral. Since there are no
currents going through our Ampere loop, at this point we have∫ z2

z1

~B(r1) · ẑdz −
∫ z2

z1

~B(r2) · ẑdz = 0, (0.0.7)

(Bz(r1)−Bz(r2))(z1 − z2) = 0, (0.0.8)

Bz(r1) = Bz(r2). (0.0.9)

In words: the z component of the B field is the same at any radius r. It can be show that Bz

vanishes infinitely far away from the current, Bz(r = ∞) = 0; therefore we conclude Bz is zero
everywhere.1

Next, we consider a ‘Gaussian cylinder’ of radius r and height h whose axis coincides with
the current ~I itself. Let us compute the magnetic flux through it. We have just argued that
Bz = 0 everywhere, so there is no flux through the top and bottom surfaces of the Gaussian
cylinder; there is only flux on the side:

2πrhBr(r) = 0. (0.0.10)

Therefore, the radial component is zero everywhere.
Finally, let us consider an Ampere circle of radius r lying on a constant z plane, centered at

(x, y) = (0, 0). Let the line integral run counterclockwise as viewed from the positive z axis, i.e.,
looking down in the negative z direction. The total current passing through this loop is I. (If
we had chosen a clockwise loop the total current would be −I.)∮

~B · d~s =

∫ 2π

0

~B · φ̂(rdφ) = 2πrBφ(r) = µ0I. (0.0.11)

1That Bz(r =∞) = 0 is true can be seen using the Biot-Savart law.
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We have arrived at

~B(r) =
µ0I

2πr
φ̂. (0.0.12)

Remark If you step through this derivation, can you see why the result in eq. (0.0.12)
really holds outside any axially symmetric static current distribution?
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