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Induced dipole & bound charge densities In the presence of an external (static)

electric field ~E0, the positive charges within the neutral atoms/molecules of a given material

would be pushed along the direction of ~E0 and the negative charges will be pulled towards − ~E0.
This causes a minute separation between positive and negative charges – i.e., a net electric dipole
moment is induced for each atom or molecule. Averaged over many atoms/molecules, we may

associate a dipole density ~P (~x) with such a material. This dipole density ~P will in turn alter
the total electric field at a given location within the material.

The primary physics associated with the dipole density ~P are as follows.

• We may associate a ‘bound-charge’ density ρb of the dielectric with the negative divergence
of the dipole density:

ρb(~x) = −~∇ · ~P (~x). (0.0.1)

• At the boundary of the dielectric, there is a surface ‘bound-charge’ density σb given by the
dot product of the dipole density with the outward unit normal n̂:

σb(~x) = ~P (~x) · n̂(~x). (0.0.2)

With these identifications, Gauss’ law continue to hold:

~∇ ·
(
ε0 ~E

)
= ρ, (0.0.3)

except ρ is now the total electric charge density – the bound-charges of equations (0.0.1) and
(0.0.2) together with everything else (e.g., the ‘free’ charges flowing through a conductor).

Linear dielectrics The key assumption that defines a linear dielectric is that the total
dipole density ~P at a given point is space is proportional to the electric field itself:

~P = ε0χD
~E, (0.0.4)

where χD is a constant that characterizes the particular dielectric at hand. More general linear
dielectrics would involve a polarization response tensor (χD)ij (i.e., a 3× 3 matrix)

Pi = ε0

3∑
j=1

(χD)ijEj, (0.0.5)
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but we will work with the simpler version in eq. (0.0.4).1 With the assumption encoded in eq.
(0.0.4), equations (0.0.1) and (0.0.2) translate to

ρb = −ε0χD
~∇ · ~E, (0.0.6)

σb = ε0χD
~E · n̂. (0.0.7)

Example Referring to Benson’s Figure 26.19, we may draw a ‘Gaussian cylinder’ with one
end protruding perpendicularly into the top capacitor conducting plate. If the bottom end is
less than (d − t)/2 away from the conductor, it is in vacuum and the integral version of Gauss
law in eq. (0.0.3) would tell us

E[inside conductor] · A+ E[vacuum] · A =
σ · A
ε0

; (0.0.8)

where the first term on the left hand side is zero because ~E = 0 inside a conductor; while the
σ on the right hand side is the charge density on the top capacitor plate. Therefore the electric
field with the vacuum region of the capacitor is

E[vacuum] =
σ

ε0
. (0.0.9)

Now, if the bottom end of the ‘Gaussian cylinder’ is inside the dielectric, Gauss’ law in eq.
(0.0.3) tells us the total charge enclosed would now receive additional contributions from the

dielectric’s surface ρb = ε0χD
~E · n̂ and potentially from the interior ρb = −ε0χD

~∇ · ~E. If the
electric field inside the dielectric is constant, however, then ~∇· ~E = 0 and ρb = 0 – as we shall see
very shortly, that we will be able to solve for ~E consistently justifies this assumption. Applying
Gauss’ law in eq. (0.0.3),

E[inside dielectric] · A = ε−1
0 (σ · A− ε0χDE[inside dielectric] · A) . (0.0.10)

There is a − sign on the second term of the right hand side because we are assuming ~E points
downwards whereas the outward normal on the top side of the dielectric points upwards.

E[inside dielectric](1 + χD) =
σ

ε0
(0.0.11)

Expressed in terms of the electric field in vacuum (eq. (0.0.9)), the electric field inside the
dielectric is reduced by κ ≡ 1 + χD if χD > 0.

E[inside dielectric] =
σ

ε0κ
=
E[vacuum]

κ
, (0.0.12)

κ ≡ 1 + χD. (0.0.13)

There is a slightly different manner to arrive at the same answer. Instead of placing the top
end of our ‘Gaussian cylinder’ inside the top conducting plate, we shall lower it to the vacuum

1Even more generally, ~P may be a complicated function of ~E; and eq. (0.0.5) may be viewed as the first term
in its Taylor Series in the weak field limit.

2



region, where we know the electric field is E[vacuum] = σ/ε0. Then, Gauss’ law tells us the
total charge enclosed now arises entirely from the surface bound-charge:

−E[vacuum] · A+ E[dielectric] · A = ε−1
0 (−ε0χDE[dielectric] · A) , (0.0.14)

E[dielectric] (1 + χD) = E[vacuum], (0.0.15)

E[dielectric] =
E[vacuum]

κ
. (0.0.16)

Capacitance is the ratio of the charge stored (σ · A) to the potential difference V ; for constant
electric fields, the latter is the electric field times the distance (work done by unit charge), which
in turn is

V = E[vacuum] · (d− t) + E[dielectric] · t =
σ

ε0

(
(d− t) +

t

κ

)
. (0.0.17)

Therefore,

C =
σ · A
V

= Aε0

(
d− t+

t

κ

)−1

. (0.0.18)
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