Physics in Curved Spacetimes: Homework Problem

Problem 0.1. 'Flow' Induced By Irreducible Decomposition
Physical problems often
lead to the following matrix equation in (flat) space

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}} \text { or } \frac{\mathrm{d} x^{i}}{\mathrm{~d} t}\right)=\Sigma^{i j}(t) x^{j}(t) \tag{0.0.1}
\end{equation*}
$$

To simplify the analysis, let consider this problem in 2D; i.e., x^{i} is the 2D Cartesian coordinate displacement vector, and $\Sigma^{i j}$ is an arbitrary 2×2 matrix. We may then decompose

$$
\begin{equation*}
\Sigma^{i j}=\frac{\delta^{i j}}{2} \delta_{a b} \Sigma^{a b}+\frac{1}{2} \Sigma^{[i j]}+\left(\frac{1}{2} \Sigma^{\{i j\}}-\frac{\delta^{i j}}{2} \delta_{a b} \Sigma^{a b}\right) . \tag{0.0.2}
\end{equation*}
$$

Use a computer program to plot the vector field representation of its irreducible parts:

$$
\begin{align*}
& \delta^{i j} x^{j} ; \tag{0.0.3}\\
& \left(\widehat{e}_{1}^{i} \widehat{e}_{2}^{j}-\widehat{e}_{2}^{i} \widehat{e}_{1}^{j}\right) x^{j} ; \tag{0.0.4}\\
& \left(\widehat{e}_{1}^{i} \widehat{e}_{1}^{j}-\widehat{e}_{2}^{i} \widehat{e}_{2}^{j}\right) x^{j}, \quad\left(\widehat{e}_{1}^{i} \widehat{e}_{2}^{j}+\widehat{e}_{2}^{i} \widehat{e}_{1}^{j}\right) x^{j} . \tag{0.0.5}
\end{align*}
$$

Also be sure to explain how these terms in equations (0.0.3)-(0.0.5) are related to eq. 0.0.2).

