Coordinates 2D and 3D

Gauss’ & Stokes’ Theorems
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1 2 Dimensions

In 2 dimensions, we may use Cartesian coordinates 7 = (x,y) and the associated infinitesimal

area
d*A = dzdy.
The gradient of a scalar V' is
VV =9,VZ +9,V7.
We may also employ polar coordinates

7= (z,y) = p(cos,sin @),
p >0, 0 <o <2m.

The associated infinitesimal area is
d?A = pdpde.

The gradient of a scalar is

. 1.~
YV = 0,Vp+ 20,6,

2 3 Dimensions
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In 3 dimensions, we may use Cartesian coordinates 77 = (z,y, z) and the associated infinitesimal

volume
d*V = dadydz.
The gradient of a scalar V' is

VV =8,VZ+8,Vi+0.VZ.
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We may also employ cylindrical coordinates

pZOa O§¢<27T, z € R.

The associated infinitesimal volume is
d*V = pdpdepdz.
The outward pointing area element on the curved surface of a cylinder of radius p is
2 A = pd>A = pdpdzp.
The gradient of a scalar V' is

S 1 -
YV = 0,Vp+ 0,V + 0.V

Spherical coordinates are defined as

7= (x,y,2) =r(sinf - cos @,sin b - sin ¢, cos ),
r >0, 0<60<m, 0 < ¢ <2m.

The associated infinitesimal volume is
d*V = r%sin Odrdfde.
The outward pointing area element on the surface of a sphere of radius r is
®A = 7d?A = 7r? sin 6d0d .
The gradient of a scalar V' is

V5. 0V -

r rsinf

VV =0, Vi+

2.1 Cross Products
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The cross product @ x b between two 3D vectors @ and b returns a vector that is perpendicular

to both; the magnitude/length is

@ x b| = |a||b] sin 6,

(2.1.1)

where 6 is the angle between the vectors. The direction of @ x b is determined by the ‘right hand

rule’, which we will shortly elaborate upon.

Let us define the cross product more systematically. Firstly, the cross product is anti-

symmetric:
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Secondly, it is linear; for a scalars A and p and vectors a, I;, and ¢,
i x (Az?wa):mwwaxa (2.1.3)

The right hand rule is defined as follows. Let Z, ¥ and 2z be the unit vectors along the z, y and
z axes. Then, the right hand rule says

Fxy=%  §xF=%7  and IxF=7. (2.1.4)

Example An immediate consequence of eq. (2.1.2)) is that the cross product of a vector
with itself is zero.

axad=—axa = 2d x d = 0. (2.1.5)

Example Even though linearity was defined with respect to the second vector in eq. (2.1.3)),
note that it is also true that

</\5+u5> X G = Nb X @+ ué X @ (2.1.6)

Can you explain why? (Hint: Use eq. (2.1.2)) twice.)
Example Let us work out the cross product of two vectors @ and b using equations (2.1.2)),

EL3), d @19

@ X b= (apT + ayJ + a.2) X (b + b7 + b.73). (2.1.7)
By linearity;,
i x b= a,7 X (byJ + 0.2) + a,7 X (b7 + b.2) + a.Z x (b7 + b, 7) (2.1.8)
= azbyz — a0y — a,b, 2+ a,b.x + a,b,y — ab,x

Collecting the coefficients, we have arrived at
@x b= (ayb. — asby) T+ (a:by — azh.) T+ (azby — agh.) 2. (2.1.10)

If you have learned how to take the determinant of a matrix, this cross product formula can
also be phrased in terms of a 3 x 3 matrix with columns filled with the components of @, b, and

(Z,7,2).

3 Gauss’ & Stokes’ Theorems

Gauss’ and Stokes’ theorems are the two mathematical theorems central to electromagnetism.



3.1 Gauss’ Theorem

Consider some 3D region ® in 3D space with a closed boundary 09. By ‘closed’ here, we mean
that there is a clear distinction between ‘inside’ and ‘outside’: namely, to get from outside to
inside one has to go through the boundary 09.

Gauss’ theorem The volume integral of the divergence of some vector field V within
D is equal to its flux through the boundary 09.

/d3vﬁ-\7:/ 2A-V (3.1.1)
D 23}

Here, d®V is the infinitesimal volume element; for example,

d*V = dardydz, (Cartesian), (3.1.2)
= pdpdedz, (Cylindrical), (3.1.3)
= r?sin(0)drddde, (Spherical). (3.1.4)
The d?A is the infinitesimal area element pointing gutwards from ©.
Example The integral of the divergence of V' inside a sphere of radius R is
0 2
/ (r2sin 6 - drd0dg)V - V(r, 0, ¢) = R? / A0 sin(0) / do (? V(R,9, ¢)) . (3.15)
r<R 0 0
Ezxample Gauss’ theorem is key to showing the equivalence between
V- E="L (3.1.6)
€o
and
Lo
/ d’A- E = — (Q enclosed within 09). (3.1.7)
B o

Can you explain why?

3.2 Stokes’ Theorem

Consider some 2D domain ® on a 2D surface (embedded in 3D space); and denote the boundary
of this 2D domain as 0. By ‘closed’ here, we mean that there is a clear distinction between
‘inside’” and ‘outside’: namely, to get from outside to inside one has to go through the boundary
09. Now pick a unit normal n on this domain @, so that we may define the directed infinitesimal
area as d°A = nd?A.

Stokes’ theorem The 2D surface integral of the curl of some vector field V within ©
is equal to its line integral along the boundary 09:

/@M. (¥x7) = /{m ds- V. (3.2.1)



where the line integral on the right hand side is counter-clockwise around ©. That is, when n
is pointing towards a hypothetical observer, this observer will perform the line integral on the
right hand side in the counter-clockwise fashion.
Example Consider the integral of the curl of V on a circle with radius r < R on the
y) plane in 3D space. Choose the unit normal to be the z—direction, i.e., n = Z; so that

(#,9) plan
ds = pd¢¢. Then,
/Odep/OQ’ngzﬁfz\-(ﬁxV):R/:’qus(a.{?)' (3.2.2)

Ezxample Stokes’ theorem is key to showing the equivalence between
VxE=-0B (3.2.3)
and
E.-ds=—-— | d°A- B. (3.2.4)
5 ot Jo

Can you explain why?



	2 Dimensions
	3 Dimensions
	Cross Products

	Gauss' & Stokes' Theorems
	Gauss' Theorem
	Stokes' Theorem


