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1 2 Dimensions

In 2 dimensions, we may use Cartesian coordinates ~r = (x, y) and the associated infinitesimal
area

d2A = dxdy. (1.0.1)

The gradient of a scalar V is

~∇V = ∂xV x̂+ ∂yV ŷ. (1.0.2)

We may also employ polar coordinates

~r = (x, y) = ρ (cosφ, sinφ) , (1.0.3)

ρ ≥ 0, 0 ≤ φ < 2π. (1.0.4)

The associated infinitesimal area is

d2A = ρdρdφ. (1.0.5)

The gradient of a scalar is

~∇V = ∂ρV ρ̂+
1

ρ
∂φV φ̂. (1.0.6)

2 3 Dimensions

In 3 dimensions, we may use Cartesian coordinates ~r = (x, y, z) and the associated infinitesimal
volume

d3V = dxdydz. (2.0.7)

The gradient of a scalar V is

~∇V = ∂xV x̂+ ∂yV ŷ + ∂zV ẑ. (2.0.8)
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We may also employ cylindrical coordinates

~r = (x, y, z) = (ρ cosφ, ρ sinφ, z) , (2.0.9)

ρ ≥ 0, 0 ≤ φ < 2π, z ∈ R. (2.0.10)

The associated infinitesimal volume is

d3V = ρdρdφdz. (2.0.11)

The outward pointing area element on the curved surface of a cylinder of radius ρ is

d2 ~A = ρ̂d2A = ρdφdzρ̂. (2.0.12)

The gradient of a scalar V is

~∇V = ∂ρV ρ̂+
1

ρ
∂φV φ̂+ ∂zV ẑ. (2.0.13)

Spherical coordinates are defined as

~r = (x, y, z) = r(sin θ · cosφ, sin θ · sinφ, cos θ), (2.0.14)

r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. (2.0.15)

The associated infinitesimal volume is

d3V = r2 sin θdrdθdφ. (2.0.16)

The outward pointing area element on the surface of a sphere of radius r is

d2 ~A = r̂d2A = r̂r2 sin θdθdφ. (2.0.17)

The gradient of a scalar V is

~∇V = ∂rV r̂ +
∂θV

r
θ̂ +

∂φV

r sin θ
φ̂. (2.0.18)

2.1 Cross Products

The cross product ~a×~b between two 3D vectors ~a and ~b returns a vector that is perpendicular
to both; the magnitude/length is

|~a×~b| = |~a||~b| sin θ, (2.1.1)

where θ is the angle between the vectors. The direction of ~a×~b is determined by the ‘right hand
rule’, which we will shortly elaborate upon.

Let us define the cross product more systematically. Firstly, the cross product is anti-
symmetric:

~a×~b = −~b× ~a. (2.1.2)
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Secondly, it is linear; for a scalars λ and µ and vectors ~a, ~b, and ~c,

~a×
(
λ~b+ µ~c

)
= λ~a×~b+ µ~a× ~c. (2.1.3)

The right hand rule is defined as follows. Let x̂, ŷ and ẑ be the unit vectors along the x, y and
z axes. Then, the right hand rule says

x̂× ŷ = ẑ, ŷ × ẑ = x̂, and ẑ × x̂ = ŷ. (2.1.4)

Example An immediate consequence of eq. (2.1.2) is that the cross product of a vector
with itself is zero.

~a× ~a = −~a× ~a ⇒ 2~a× ~a = 0. (2.1.5)

Example Even though linearity was defined with respect to the second vector in eq. (2.1.3),
note that it is also true that (

λ~b+ µ~c
)
× ~a = λ~b× ~a+ µ~c× ~a. (2.1.6)

Can you explain why? (Hint: Use eq. (2.1.2) twice.)

Example Let us work out the cross product of two vectors ~a and ~b using equations (2.1.2),
(2.1.3), and (2.1.4).

~a×~b = (axx̂+ ayŷ + az ẑ)× (bxx̂+ byŷ + bz ẑ). (2.1.7)

By linearity,

~a×~b = axx̂× (byŷ + bz ẑ) + ayŷ × (bxx̂+ bz ẑ) + az ẑ × (bxx̂+ byŷ) (2.1.8)

= axbyẑ − axbzŷ − aybxẑ + aybzx̂+ azbxŷ − azbyx̂ (2.1.9)

Collecting the coefficients, we have arrived at

~a×~b = (aybz − azby) x̂+ (azbx − axbz) ŷ + (azbx − axbz) ẑ. (2.1.10)

If you have learned how to take the determinant of a matrix, this cross product formula can
also be phrased in terms of a 3× 3 matrix with columns filled with the components of ~a, ~b, and
(x̂, ŷ, ẑ).

3 Gauss’ & Stokes’ Theorems

Gauss’ and Stokes’ theorems are the two mathematical theorems central to electromagnetism.
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3.1 Gauss’ Theorem

Consider some 3D region D in 3D space with a closed boundary ∂D. By ‘closed’ here, we mean
that there is a clear distinction between ‘inside’ and ‘outside’: namely, to get from outside to
inside one has to go through the boundary ∂D.

Gauss’ theorem The volume integral of the divergence of some vector field ~V within
D is equal to its flux through the boundary ∂D.∫

D

d3V ~∇ · ~V =

∫
∂D

d2 ~A · ~V (3.1.1)

Here, d3V is the infinitesimal volume element; for example,

d3V = dxdydz, (Cartesian), (3.1.2)

= ρdρdφdz, (Cylindrical), (3.1.3)

= r2 sin(θ)drdθdφ, (Spherical). (3.1.4)

The d2 ~A is the infinitesimal area element pointing outwards from D.
Example The integral of the divergence of ~V inside a sphere of radius R is∫

r≤R
(r2 sin θ · drdθdφ)~∇ · ~V (r, θ, φ) = R2

∫ π

0

dθ sin(θ)

∫ 2π

0

dφ
(
r̂ · ~V (R, θ, φ)

)
. (3.1.5)

Example Gauss’ theorem is key to showing the equivalence between

~∇ · ~E =
ρ

ε0
(3.1.6)

and ∫
∂D

d2 ~A · ~E =
1

ε0
(Q enclosed within ∂D) . (3.1.7)

Can you explain why?

3.2 Stokes’ Theorem

Consider some 2D domain D on a 2D surface (embedded in 3D space); and denote the boundary
of this 2D domain as ∂D. By ‘closed’ here, we mean that there is a clear distinction between
‘inside’ and ‘outside’: namely, to get from outside to inside one has to go through the boundary
∂D. Now pick a unit normal n̂ on this domain D, so that we may define the directed infinitesimal
area as d2 ~A = n̂d2A.

Stokes’ theorem The 2D surface integral of the curl of some vector field ~V within D
is equal to its line integral along the boundary ∂D:∫

D

d2 ~A ·
(
~∇× ~V

)
=

∫
∂D

d~s · ~V , (3.2.1)
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where the line integral on the right hand side is counter-clockwise around D. That is, when n̂
is pointing towards a hypothetical observer, this observer will perform the line integral on the
right hand side in the counter-clockwise fashion.

Example Consider the integral of the curl of ~V on a circle with radius r ≤ R on the
(x, y) plane in 3D space. Choose the unit normal to be the z−direction, i.e., n̂ = ẑ; so that

d~s = ρdφφ̂. Then, ∫ R

0

ρdρ

∫ 2π

0

dφ ẑ ·
(
~∇× ~V

)
= R

∫ 2π

0

dφ
(
φ̂ · ~V

)
. (3.2.2)

Example Stokes’ theorem is key to showing the equivalence between

~∇× ~E = −∂t ~B (3.2.3)

and ∫
∂D

~E · d~s = − ∂

∂t

∫
D

d2 ~A · ~B. (3.2.4)

Can you explain why?
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