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1 Preface

This work constitutes the free textbook project I initiated towards the end of Summer 2015,
while preparing for the Fall 2015 Analytical Methods in Physics course I taught to upper level
(mostly 2nd and 3rd year) undergraduates here at the University of Minnesota Duluth. During
Fall 2017, I taught the graduate-level Differential Geometry and Physics in Curved Spacetimes
here at National Central University, Taiwan; this has allowed me to further expand the text.

I assumed that the reader has taken the first three semesters of calculus, i.e., up to multi-
variable calculus, as well as a first course in Linear Algebra and ordinary differential equations.
(These are typical prerequisites for the Physics major within the US college curriculum.) My
primary goal was to impart a good working knowledge of the mathematical tools that underlie
fundamental physics — quantum mechanics and electromagnetism, in particular. This meant that
Linear Algebra in its abstract formulation had to take a central role in these notes.! To this end,
[ first reviewed complex numbers and matrix algebra. The middle chapters cover calculus beyond
the first three semesters: complex analysis and special /approximation/asymptotic methods. The
latter, I feel, is not taught widely enough in the undergraduate setting. The final chapter is meant
to give a solid introduction to the topic of linear partial differential equations (PDEs), which
is crucial to the study of electromagnetism, linearized gravitation and quantum mechanics/field
theory. But before tackling PDEs, I feel that having a good grounding in the basic elements of
differential geometry not only helps streamlines one’s fluency in multi-variable calculus; it also
provides a stepping stone to the discussion of curved spacetime wave equations.

Some of the other distinctive features of this free textbook project are as follows.

Index notation and Einstein summation convention is widely used throughout the physics
literature, so I have not shied away from introducing it early on, starting in §(3) on matrix
algebra. In a similar spirit, I have phrased the abstract formulation of Linear Algebra in §(4)
entirely in terms of P.A.M. Dirac’s bra-ket notation. When discussing inner products, I do make
a brief comparison of Dirac’s notation against the one commonly found in math textbooks.

I made no pretense at making the material mathematically rigorous, but I strived to make
the flow coherent, so that the reader comes away with a firm conceptual grasp of the overall
structure of each major topic. For instance, while the full fledged study of continuous (as opposed
to discrete) vector spaces can take up a whole math class of its own, I feel the physicist should
be exposed to it right after learning the discrete case. For, the basics are not only accessible, the
Fourier transform is in fact a physically important application of the continuous space spanned by
the position eigenkets {|Z)}. One key difference between Hermitian operators in discrete versus
continuous vector spaces is the need to impose appropriate boundary conditions in the latter;
this is highlighted in the Linear Algebra chapter as a prelude to the PDE chapter §(12), where
the Laplacian and its spectrum plays a significant role. Additionally, while the Linear Algebra
chapter was heavily inspired by the first chapter of Sakurai’s Modern Quantum Mechanics, 1
have taken effort to emphasize that quantum mechanics is merely a very important application
of the framework; for e.g., even the famous commutation relation [X*, P;| = 25; is not necessarily
a quantum mechanical statement. This emphasis is based on the belief that the power of a given

IThat the textbook originally assigned for this course relegated the axioms of Linear Algebra towards the
very end of the discussion was one major reason why I decided to write these notes. This same book also cost
nearly two hundred (US) dollars — a fine example of exorbitant textbook prices these days — so I am glad I saved
my students quite a bit of their educational expenses that semester.



mathematical tool is very much tied to its versatility — this issue arises again in the JWKB
discussion within §(7), where I highlight it is not merely some “semi-classical” limit of quantum
mechanical problems, but really a general technique for solving differential equations.

Much of §(6) is a standard introduction to calculus on the complex plane and the theory
of complex analytic functions. However, the Fourier transform application section gave me
the chance to introduce the concept of the Green’s function; specifically, that of the ordinary
differential equation describing the damped harmonic oscillator. This (retarded) Green’s function
can be computed via the theory of residues — and through its key role in the initial value
formulation of the ODE solution, allows the two linearly independent solutions to the associated
homogeneous equation to be obtained for any value of the damping parameter.

Differential geometry may appear to be an advanced topic to many, but it really is not. From
a practical standpoint, it cannot be overemphasized that most vector calculus operations can
be readily carried out and the curved space(time) Laplacian/wave operator computed once the
relevant metric is specified explicitly. T wrote much of §(9) in this “practical physicist” spirit.
Although it deals primarily with curved spaces, teaching Physics in Curved Spacetimes during
Fall 2017 at National Central University, Taiwan, gave me the opportunity to add its curved
spacetime sequel, §(11), where I elaborated upon geometric concepts — the emergence of the
Riemann tensor from parallel transporting a vector around an infinitesimal parallelogram, for
instance — deliberately glossed over in §(9). It is my hope that §(9) and §(11) can be used to
build the differential geometric tools one could then employ to understand General Relativity,
Einstein’s field equations for gravitation.

In §(12) on PDEs, I begin with the Poisson equation in curved space, followed by the enu-
meration of the eigensystem of the Laplacian in different flat spaces. By imposing Dirichlet or
periodic boundary conditions for the most part, I view the development there as the culmination
of the Linear Algebra of continuous spaces. The spectrum of the Laplacian also finds important
applications in the solution of the heat and wave equations. I have deliberately discussed the
heat instead of the Schrédinger equation because the two are similar enough, I hope when the
reader learns about the latter in her/his quantum mechanics course, it will only serve to en-
rich her/his understanding when she/he compares it with the discourse here. Finally, the wave
equation in Minkowski spacetime — the basis of electromagnetism and linearized gravitation — is
discussed from both the position/real and Fourier/reciprocal space perspectives. The retarded
Green’s function plays a central role here, and I spend significant effort exploring different means
of computing it. The tail effect is also highlighted there: classical waves associated with massless
particles transmit physical information within the null cone in (14 1)D and all odd dimensions.
Wave solutions are examined from different perspectives: in real/position space; in frequency
space; in the non-relativistic/static limits; and with the multipole-expansion employed to extract
leading order features. The final section contains a brief introduction to the variational principle
for the classical field theories of the Poisson and wave equations.

Finally, I have interspersed problems throughout each chapter because this is how I personally
like to engage with new material — read and “doodle” along the way, to make sure I am properly
following the details. My hope is that these notes are concise but accessible enough that anyone
can work through both the main text as well as the problems along the way; and discover they
have indeed acquired a new set of mathematical tools to tackle physical problems.

By making this material available online, I view it as an ongoing project: I plan to update
and add new material whenever time permits; for instance, illustrations/figures accompanying



the main text may eventually show up at some point down the road. The most updated version
can be found at the following URL:

http://www.stargazing.net/yizen/AnalyticalMethods_YZChu.pdf

I would very much welcome suggestions, questions, comments, error reports, etc.; please feel free
to contact me at yizen [dot] chu @ gmail [dot] com.

— Yi-Zen Chu


http://www.stargazing.net/yizen/AnalyticalMethods_YZChu.pdf

2 Complex Numbers and Functions

2The motivational introduction to complex numbers, in particular the number #,® is the solution
to the equation

i2 = —1. (2.0.1)

That is, “what’s the square root of —17” For us, we will simply take eq. (2.0.1) as the defining
equation for the algebra obeyed by 7. A general complex number z can then be expressed as

z=x+1y (2.0.2)

where = and y are real numbers. The z is called the real part (= Re(z)) and y the imaginary
part of z (= Im(2)).

Geometrically speaking z is a vector (z,y) on the 2-dimensional plane spanned by the
real axis (the x part of z) and the imaginary axis (the iy part of z). Moreover, you may recall
from (perhaps) multi-variable calculus, that if r is the distance between the origin and the point
(x,y) and ¢ is the angle between the vector joining (0,0) to (z,y) and the positive horizontal
axis — then

(x,y) = (rcos¢,rsin ). (2.0.3)
Therefore a complex number must be expressible as
z=x+ iy =r(cosd +isine). (2.0.4)
This actually takes a compact form using the exponential:
z =1z +iy=r(cos¢+ising) = re'?, r>0,0<¢<2r. (2.0.5)

Some words on notation. The distance r between (0, 0) and (z,y) in the complex number context
is written as an absolute value, i.e.,

2] = |z +iy| = r = /a? + 32, (2.0.6)
where the final equality follows from Pythagoras’ Theorem. The angle ¢ is denoted as
arg(z) = arg(re®) = ¢. (2.0.7)
The symbol C is often used to represent the 2D space of complex numbers.
z = |z|e™e®) € C. (2.0.8)

Problem 2.1. Euler’s formula. Assuming exp z can be defined through its Taylor series
for any complex z, prove by Taylor expansion and eq. (2.0.1) that

e'? = cos(¢) +isin(¢), @ E€R. (2.0.9)

2Some of the material in this section is based on James Nearing’s Mathematical Tools for Physics.
3Engineers use j instead of i.



http://www.physics.miami.edu/~nearing/mathmethods/

Arithmetic Addition and subtraction of complex numbers take place component-by-
component, just like adding/subtracting 2D real vectors; for example, if

21 = x1 + iy and 29 = Ty + 1Yo, (2.0.10)
then
Z1 + Z9 = (ZL’l + $2) + Z(’yl + yg) (2011)

Multiplication is more easily done in polar coordinates: if z; = rie' and 2, = 192, their
product amounts to adding their phases and multiplying their radii, namely

2129 = Tyrec (O1102) (2.0.12)
To summarize:

Complex numbers {z = z+iy = re’®|z,y € R;7 > 0, ¢ € R} are 2D real vectors as
far as addition/subtraction goes — Cartesian coordinates are useful here (cf. (2.0.11)).
It is their multiplication that the additional ingredient/algebra i* = —1 comes into
play. In particular, using polar coordinates to multiply two complex numbers (cf.
(2.0.12)) allows us to see the result is a combination of a re-scaling of their radii plus

a rotation.
Problem 2.2. If 2 = x + iy what is 2?2 in terms of z and y? [
Problem 2.3. Explain why multiplying a complex number z = x + iy by ¢ amounts to
rotating the vector (z,y) on the complex plane counter-clockwise by x/2. Hint: first write ¢ in
polar coordinates. O
Problem 2.4. Describe the points on the complex z-plane satisfying |z — 29| < R, where

zp is some fixed complex number and R > 0 is a real number.

Problem 2.5. Use the polar form of the complex number to proof that multiplication of
complex numbers is associative, i.e., 212923 = 21(2223) = (2122)23. d
Problem 2.6. Explain why, for real a and b,

la®| = 1. (2.0.13)
Hint: a = explna. O
Problem 2.7. Multiplication and Vector Calculus If 21 = x1 +iy; and 2o = x5 + 15,
show that
Here, we have converted the complex numbers into 3D vectors via 27 = (xl,yl)T and Zy =
(w2,y2)T; whereas e3 = (0,0,1). O

10



Complex conjugation Taking the complex conjugate of z = x + iy means we flip the sign
of its imaginary part, i.e.,

2*=x —iy; (2.0.15)

it is also denoted as z. In polar coordinates, if z = re'® = r(cos¢ + isin¢) then z* = re=*
because

e = cos(—¢) +isin(—¢) = cos ¢ — isin . (2.0.16)
The sin ¢ — —sin ¢ is what brings us from = + iy to x — iy. Now
=22t = (v +iy)(z—iy) = 22+ = |2~ (2.0.17)

When we take the ratio of complex numbers, it is possible to ensure that the imaginary number
1 appears only in the numerator, by multiplying the numerator and denominator by the complex
conjugate of the denominator. For x, y, a and b all real,

v+iy  (a—ib)(x +iy) (ax+by) +i(ay — bx)

— = . 2.0.1
a +ib a? + b2 a? + b2 (2.0.18)

Problem 2.8. Is (z122)* = 2723, i.e., is the complex conjugate of the product of 2 complex
numbers equal to the product of their complex conjugates? What about (z1/22)* = 27/257 Is
|2122| = |21]]22|7 What about |z1/23] = |21|/|22|? Also show that arg(z; - 22) = arg(z1) + arg(2).
Strictly speaking, arg(z) is well defined only up to an additive multiple of 27. Can you explain

why? Hint: polar coordinates are very useful in this problem. [
Problem 2.9. Show that z is real if and only if 2 = 2*. Show that z is purely imaginary
if and only if z = —z*. Show that z + 2* = 2Re(z) and z — z* = 2iIm(z). Hint: use Cartesian
coordinates. [
Problem 2.10. Roots come in complex conjugate pairs Prove that the roots of a

polynomial with real coefficients

Pn(z) =co+ciz+cpz® + - +en2?, {c; € R}, (2.0.19)
come in complex conjugate pairs; i.e., if z is a root then so is z*. Hint: If Py(z) = 0, consider
its complex conjugate. O]
Trigonometric, Hyperbolic and Exponential functions Complex numbers allow us

to connect trigonometric, hyperbolic and exponential (exp) functions. Start from
+ip ..
e'? = cos ¢ L isin ¢. (2.0.20)
These two equations can be added and subtracted to yield

%, sin(z):%’ tan(z)zsm(z). (2.0.21)
(3

cos(z) =

11



We have made the replacement ¢ — z. This change is cosmetic if 0 < z < 27, but we can in
fact now use eq. (2.0.21) to define the trigonometric functions in terms of the exp function for
any complex z. This exp z, for z = x + iy, is exponentially dominant (suppressed) in magnitude
for large positive (negative) x = Re(z); and periodic along the y = Im(z) direction; because
expz = " = (exp x)(expiy). (2.0.22)

(Compare this form of the exponential with eq. (2.0.8).) Trigonometric identities can be readily
obtained from their exponential definitions. For example, the addition formulas would now begin
from

e!01102) = i1 ¢if2, (2.0.23)
Applying Euler’s formula (eq. (2.0.9)) on both sides,

cos(0y + 63) + isin(0; 4 02) = (cos by + isinO;)(cos Oy + i sin ;) (2.0.24)

= (cos 0 cos By — sin 0 sin 03) + i(sin 0, cos Oy + sin O cos by).

If we suppose ;2 are real angles, equating the real and imaginary parts of the left-hand-side
and the last line tell us

cos(#y + 03) = cos by cos by — sin By sin b, (2.0.25)
sin(f; + 03) = sin 61 cos O3 + sin O, cos ;. (2.0.26)
Problem 2.11. You are probably familiar with the hyperbolic functions, now defined as
z —z z _ =z inh
cosh(z) = %, sinh(z) = %, tanh(z) = (S;)I;h((z;’ (2.0.27)

for any complex z. Show that

cosh(iz) = cos(z), sinh(iz) = isin(z), (2.0.28)

cos(iz) = cosh(z), sin(iz) = isinh(z). (2.0.29)

These relations tell us, the trigonometric and hyperbolic functions are really connected to each

other via a m/2 rotation on the complex z—plane; i.e., z — iz. O
Problem 2.12. Calculate, for real # and positive integer N:

cos(f) + cos(26) 4 cos(36) + - - - + cos(NG) =7 (2.0.30)

sin(6) + sin(26) + sin(36) + - - - + sin(NO) =7 (2.0.31)

Hint: consider the geometric series e + 2 4 ... 4 N0, O

Problem 2.13. Starting from (e?)", for arbitrary integer n, re-write cos(nf) and sin(nf)

as a sum involving products/powers of sinf and cosf. Hint: if the arbitrary n case is confusing

at first, start with n = 1,2, 3 first. O]
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Roots of unity In polar coordinates, circling the origin n times bring us back to the same
point,

z = reldtizm™m n=0,+1,42, +3,.... (2.0.32)

This observation is useful for the following problem: what is mth root of 1, when m is a positive
integer? Of course, 1 is an answer, but so are

1H/m = gizmn/m n=0,1,...,m—1. (2.0.33)
The terms repeat themselves for n > m; the negative integers n do not give new solutions for m
integer. If we replace 1/m with a/b where a and b are integers that do not share any common
factors, then

1a/b — gi2mn(a/b) for n=01,...,b—1, (2.0.34)
since when n = b we will get back 1. If we replaced (a/b) with say 1/,
1T — ei27rn/7r _ ei2n’ (2035)

then there will be infinite number of solutions, because 1/7 cannot be expressed as a ratio of
integers — there is no way to get 2n = 2wn/, for n’ integer.

In general, when you are finding the mth root of a complex number z, you are actually
solving for w in the polynomial equation w™ = z. The fundamental theorem of algebra tells us,
if m is a positive integer, you are guaranteed m solutions — although not all of them may be
distinct.

Square root of —1 What is v/—1? Since —1 = (™2™ for any integer n,

(el T2mmN1/2 — pimf2timn — 4 =0, 1. (2.0.36)
Problem 2.14. Find all the solutions to /1 — . [
Logarithm and powers As we have just seen, whenever we take the root of some

complex number z, we really have a multi-valued function. The inverse of the exponential is
another such function. For w = x + iy, where x and y are real, we may consider

ev = eyt n=0,+1,+2, 43, .... (2.0.37)
We define In to be such that

Ine” =z +i(y + 27mn). (2.0.38)
Another way of saying this is, for a general complex z,

In(z) = In |z| + i(arg(z) + 27n). (2.0.39)

One way to make sense of how to raise a complex number z = re¢ to the power of another
complex number w = z + iy, namely 2", is through the In:

w wln z

JRTR _ platiy)(n(r)+i(0+2mn)) _ jwlnr—y(0+2mn) Si(yIn(r)+z(0+2mn)) (2.0.40)

This is, of course, a multi-valued function. We will have more to say about such multi-valued
functions when discussing their calculus in §(6).
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Problem 2.15. Change-of-Base If a >0 and 6 € R, explain why || = 1. What is the
change in 6 swept out by a complete unit circle around the origin of the complex plane? Hint:
a=ere. O]

Problem 2.16. Zeroes of trigonometric and hyperbolic functions Find the inverse
hyperbolic functions of eq. (2.0.27) in terms of In. Does sin(z) = 0, cos(z) = 0 and tan(z) =0
have any complex solutions? Hint: for the first question, write ¢* = w and e™* = 1/w. Then
solve for w. A similar strategy may be employed for the second question. ]

Taylor Expansion If f(x) is a real function of the real variable x, and if all n > 1
derivatives of f exists at © = x( for some fixed z, then f(z) in the neighborhood of x ~ z7 may
be approximated by a polynomial of degree N via the formula

o) flag) + Y0 Eo RS CIE 2 0), 2.0.41)

n=1
i.e., at zeroth order f is simply its value at x = xq; at first order it is approximately a straight line
passing through (zg, f(zo)) and tangent to the curve (z, f(z)); at second order it is a parabola;
etc. The N — oo limit provides an exact expression for f(z) itself over the domain of x on the
real line where the infinite series converges.

flx) = flzo) + Y @ _n!mn dnf(j; o) (2.0.42)

This infinite sum in eq. (2.0.42) is known as the Taylor series (or, Taylor expansion) of f(z)
about the point x = xy; and is unique whenever it exists. The Taylor series of some commonly
used functions are as follows. For those that converge on the entire real line, x € R,

. o0 (_)n—&—len—l .’L'3 SU5
= — = - . 2.0.43
sin(z) ; 2n— 1) 3 + = =] +... ( )
e (_)nxQn ZL‘2 1'4
= —=1- : 2.0.44
cos(x) HZ:O )l o +— 1 +..., ( )
= 2! 2 a2
e’ =expr z_:g! —l—x+2+6+ ; (2.0.45)
and for |z] < 1,
In(1 — ) i o (2.0.46)
— 14
Exponential Operator By comparison with eq. (2.0.45), notice the Taylor series in eq.

(2.0.42) itself can be written as an exponential operator:

flz+a) )+ Z a dtixn (2.0.47)
= exp (a%) f(z). (2.0.48)
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In the linear algebra discussion below, we shall see that the derivative can be viewed as the
‘generator’ of translations; in this case, * — = + a.

Problem 2.17. Multi-Variable Taylor Expansion Suppose the real function F(¥)
depends on D > 2 real arguments ¥ = (2,22, 2%,...,2"). (Note that 2’ here, for i €
{1,2,3,...,D}, is not the ith power of z; but the ith coordinate in a given D—dimensional
space.) Apply eq. (2.0.42) to each of argument of F' to show that its Taylor series about & = &
is

oo 1 .
F — (7 — -Vz)"F(Z = 1y), 2.0.49
)= F@) + 35 V(=) (2.0.49)
where the nth derivative is, more explicitly, given by

= ) @ —a)(@? —af) . (2" = 2f)0.0 0. . 0. F(Z = ). (2.0.50)

i1eyin=1

From this, further explain why

F(@+ @) = exp (a. %) £(@). (2.0.51)

Hint: Start by performing induction on D. ]

Problem 2.18. Let 5 and E’ be vectors in a 2D Euclidean space, i.e., you may assume their
Cartesian components are

€= (z,y) = p(cos ¢,sin @), g = (2,y) = p(cos ¢, sin¢). (2.0.52)

Use complex numbers, and assume that the following complex version of eq. (2.0.46) holds; i.e.,
replacing z € R with z € Z,

In(1 — 2) Z’% 2] < 1; (2.0.53)
/=1
to show that
> 5 > 1 ¢ ,
In|{ —¢|=Inps — Z 7 (%) CoS (f(qb — ¢ )>, (2.0.54)
=1 >

where ps is the larger and p< is the smaller of the (p.p), and |€— €| is the distance between the

vectors £ and € — not the absolute value of some complex number. Here, In ]f ¢ | is proportional
to the electric or gravitational potential generated by a point charge/mass in 2-dimensional flat
space. Hint: first let z = p- ¢ and 2/ = p'e’?’; then consider In(z — 2’) — how do you extract
In | — &| from it? O
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3 Matrix Algebra

“In this section I will review some basic properties of matrices and matrix algebra, oftentimes
using index notation. We will assume all matrices have complex entries unless otherwise stated.
This is primarily intended to be warmup to the next section, where I will treat Linear Algebra
from a more abstract point of view.

3.1 Basics, Matrix Operations, and Special Types of Matrices

Index notation, Einstein summation, Basic Matrix Operations Consider two ma-
trices M and N. The ¢j component — the ith row and jth column of M and that of N can be
written as

M. and N (3.1.1)

J

As an example, if M is a 2 x 2 matrix, we have

MYy MY } |

3.1.2
M21 M22 ( )

M= {
I prefer to write one index up and one down, because as we shall see in the abstract formulation
of linear algebra below, the row and column indices may transform ‘oppositely’. However, it is
common to see the notation M;; and M"Y, etc., too.
A vector ¢ can be written as

vt = (v oP T o). (3.1.3)

Here, v° does not mean the fifth power of some quantity v, but rather the 5th component of the
vector v.
The matrix multiplication M - N can be written as

D
(M- N),; =Y M{N* = M\ N, (3.1.4)
k=1
In words: the ij component of the product M N, for a fixed i and fixed j, means we are taking

the ith row of M and “dotting” it into the jth column of N. In the second equality we have
employed Einstein’s summation convention, which we will continue to do so in these notes:

repeated indices are summed over their relevant range — in this case, k € {1,2,...,D}. For
example, if
a b 1 2
we[r ) we]le] 515
then
a+3b 2a+4b
M'N_{c—kfid 2c+4d]‘ (3.1.6)

4Much of the material here in this section were based on Chapter 1 of Cahill’s Physical Mathematics.
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Note: M N ’“j works for multiplication of non-square matrices M and N too, as long as the
number of columns of M is equal to the number of rows of N, so that the sum involving k& makes
sense.

Addition of M and N; and multiplication of M by a complex number \ goes respectively as

(M + N)'; = M, + N, (3.1.7)
and
(AM)'; = AM",. (3.1.8)

Associativity The associativity of matrix multiplication means (AB)C = A(BC) = ABC.
This can be seen using index notation

AL BYCL = (AB)',C';, = A% (BO)*; = (ABC)',. (3.1.9)

Tr Tr(A) = A’, denotes the trace of a square matrix A. The index notation makes it clear
the trace of AB is that of BA because

Tr[A- B] = A", B = Bh A", =Tr[B - A]. (3.1.10)

This immediately implies the Tr is cyclic, in the sense that

Tr[X; Xo- - Xy]=Tr [ Xn- X7 - Xo-- - Xy | =Tr[Xo- X3+ Xy - Xy]. (3.1.11)
Problem 3.1. Prove the linearity of the Tr, namely for D x D matrices X and Y and
complex number A,

Tr[ X +Y]=Tr[X]|+Tr[Y], Tr [AX] = A\Tr [X]. (3.1.12)
Comment on whether it makes sense to define Tr(A) = A%, if A is not a square matrix. O

Identity and the Kronecker delta The D x D identity matrix I has 1 on each and
every component on its diagonal and 0 everywhere else. This is also the Kronecker delta.

sz:(gzj:]_, Z:j
=0, 1# ] (3.1.13)
The Kronecker delta is also the flat Euclidean metric in D spatial dimensions; in that context
we would write it with both lower indices ¢;; and its inverse is 6%.
The Kronecker delta is also useful for representing diagonal matrices. These are matrices that

have non-zero entries strictly on their diagonal, where row equals to column number. For example

A'; = a;0% = a;07 is the diagonal matrix with ay, as, ..., ap filling its diagonal components, from

the upper left to the lower right. Diagonal matrices are also often denoted, for instance, as
A = diag[ay, ..., ap). (3.1.14)

Suppose we multiply AB, where B is also diagonal (B; = b0} = b;0?),

=

(AB)'; = a;0]b;05. (3.1.15)
l
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If © # j there will be no [ that is simultaneously equal to ¢ and j; therefore either one or both
the Kronecker deltas are zero and the entire sum is zero. If ¢ = j then when (and only when)
=i = j, the Kronecker deltas are both one, and

This means we have shown, using index notation, that the product of diagonal matrices yields
another diagonal matrix.

(AB)ij = aibjéé (No sum over i, j). (3.1.17)
Transpose The transpose of any matrix A, denoted a AT, is defined via
(AT, = A%, (3.1.18)

In words: the i row of AT is the ith column of A; the jth column of AT is the jth row of A. If
Ais a (square) D x D matrix, you reflect it along the diagonal to obtain AT.

Problem 3.2. Show using index notation that (A - B)T = BTAT. O
Problem 3.3. Explain why the ij component of ATB is
Trvi _ Al Rl
(A'B)'; = A", B, (3.1.19)

whereas the ij component of ABT is

(ABTY', = A\ B, (3.1.20)

Adjoint The adjoint t of any matrix is given by
(AN = (A7) = (A7), (3.1.21)

In other words, AT = (AT)*; to get A, you start with A, take its transpose, then take its complex
conjugate. An example is,

1+i e
= < .

1+7 z+y 1—17 z—1y
AT:|: @ie \/E :|7 AT_ @72’0 \/1—0 :| (3123)

Orthogonal, Unitary, Symmetric, and Hermitian A D x D matrix A is

1. Orthogonal if ATA = AAT = 1. The set of real orthogonal matrices implement rotations
in a D-dimensional real (vector) space.

2. Unitary if A"A = AAT = I. Thus, a real unitary matrix is orthogonal. Moreover, unitary
matrices, like their real orthogonal counterparts, implement “rotations” in a D dimensional
complex (vector) space.
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3. Symmetric if AT = A; anti-symmetric if AT = —A.
4. Hermitian if A" = A; anti-hermitian if AT = —A.
Problem 3.4. Explain why, if A is an orthogonal matrix, it obeys the equation
AL A 85 = O (3.1.24)
Now explain why, if A is a unitary matrix, it obeys the equation
(AT A 655 = O (3.1.25)
[

Problem 3.5. Prove that (AB)T = BTAT and (AB)" = BYAT. This means if A and B are
orthogonal, then AB is orthogonal; and if A and B are unitary AB is unitary. Can you explain
why? ]

Simple examples of a unitary, symmetric and Hermitian matrix are, respectively (from left to
right):

e 0

0 61’5 )

3.2 Determinants, Linear (In)dependence, Inverses, Eigensystems

[ewa {m 1—i

X b PR ] 0,6 € R. (3.1.26)

Levi-Civita symbol and the Determinant We will now define the determinant of a

D x D matrix A through the Levi-Civita symbol €4, i, ,ip, Where every index runs from 1
through D:

det A = €;4,.0, ip AT A2y AP AT (3.2.1)

This definition is equivalent to the usual co-factor expansion definition.
The D—dimensional Levi-Civita symbol is defined through the following properties.

e It is completely antisymmetric in its indices. This means swapping any of the indices
iq <> iy (for a # b) will return

Citig.iq—10aiat1--ip_19pipg1-9p_1ip —  Ci1ig...ig—19pia+1---ip—1%aibt1-iD_10D" (3-2-2)

e In matrix algebra and flat Euclidean space, €193 p = €'2+P = 1.7

These are sufficient to define every component of the Levi-Civita symbol. Because € is fully anti-
symmetric, if any of its D indices are the same, say i, = i3, then the Levi-Civita symbol returns
zero. (Why?) Whenever 4, ...ip are distinct indices, €4, i, ,ip is really the sign of the per-
mutation (= (—)munber of swaps of index pairs) that hrings {1,2,..., D —1, D} to {i1,4,...,ip_1,ip}
Hence, €4, ip_,ip 18 +1 when it takes zero/even number of swaps, and —1 when it takes odd.

5In Lorentzian flat spacetimes, the Levi-Civita tensor with upper indices will need to be carefully distinguished
from its counterpart with lower indices.
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For example, in the 2 dimensional case €;; = €99 = 0; whereas it takes one swap to go from
12 to 21. Therefore,

1 =¢€19 = —é€9. (3.2.3)
In the 3 dimensional case,
1 = €193 = —€213 = —€321 = —€132 = €231 = €312. (3.2.4)
Properties of the determinant include
det AT = det A, det(A- B) = det A - det B, det A~ = ﬁ, (3.2.5)

for all square matrices A and B. As a simple example, let us use eq. (3.2.1) to calculate the
determinant of

A= {Z 21 (3.2.6)

Remember the only non-zero components of ¢;,;, are €15 = 1 and € = —1.

det A = ep AY A%, + €91 A% A, = A1 A%, — A% AL,
= ad — be. (3.2.7)

Problem 3.6. Inverse of 2 x 2 matrix By viewing € as a 2 X 2 matrix, prove that,
whenever the inverse of a matrix M exist, it can be written as

e-MT. e e MV e e - MT.¢t

M1t =— = = . 3.2.8
det M det M det M ( )

Hint: Can you explain why eq. (3.2.1) implies
eap M MB; = ery det M? (3.2.9)
Then contract both sides with M ~! and use €2 = —I. Or, simply prove it by brute force. O

Problem 3.7. Generalization of eq. (3.2.1) Explain why eq. (3.2.1) implies

AR Ad2 iD-1 ip
67417«2~--74D7174DA j1A jz"'A jD—lA ip = €jij2...jp—1ip

det A. (3.2.10)
Hint: What happens when you swap A" and A™ in eq. (3.2.1)? ]
Whenever the inverse of A in eq. (3.2.10) exists; i.e., there is a A~! such that (A™")" Al =

6"y = A(A")1; then by contracting both sides with N powers of A™! one would arrive at

k1 kp_n _ -1\l
€i1-..iNk1-..kD7NA G A ip_N — (A ) i

J(ATH det R). (3.2.11)

inEli-dNjrdp-n (

This formula has applications in, for instance, rigid body motion in 3D.
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Problem 3.8. Determinant of 2-Block Off Diagonal Matrix Consider the following
2N x 2N matrix,

M = { Bji)xN A%XN } ; (3.2.12)

where A and B are N x N blocks. Prove that
det M = (=) (det A)(det B). (3.2.13)
Hint: You should find the leftmost N terms of the right hand side of eq. (3.2.1) to involve det B
and the rightmost N terms det A. ]
Linear (in)dependence Given a set of D vectors {vy,...,vp}, we say one of them is

linearly dependent (say v;) if we can express it in as a sum of multiples of the rest of the vectors,

D-1
v; = Z X V) for some x; € C. (3.2.14)
J#i

We say the D vectors are linearly independent if none of the vectors are linearly dependent on
the rest.

Determinant as test of linear independence If we view the columns or rows of a
D x D matrix A as vectors and if these D vectors are linearly dependent, then the determinant
of A is zero. This is because of the antisymmetric nature of the Levi-Civita symbol. Moreover,
suppose det A # 0. Cramer’s rule (cf. eq. (3.2.30) below) tells us the inverse A~! exists. In fact,
for finite dimensional matrix A, its inverse A~! is unique. That means the only solution to the
D-component row (or column) vector w, obeying w- A =0 (or, A-w = 0), is w = 0. And since
w - A (or A-w) describes the linear combination of the rows (or, columns) of A; this indicates
they must be linearly independent whenever det A # 0.

For a square matrix A, det A = 0 iff (= if and only if) its columns and rows
are linearly dependent. Equivalently, det A # 0 iff its columns and rows are linearly
independent.

Problem 3.9. If the columns of a square matrix A are linearly dependent, use eq. (3.2.1)
to prove that det A = 0. Hint: use the antisymmetric nature of the Levi-Civita symbol.

Problem 3.10. Show that, for a D x D matrix A and some complex number A,
det(AA) = AP det A. (3.2.15)
Hint: this follows almost directly from eq. (3.2.1). O
Relation to cofactor expansion The co-factor expansion definition of the determinant
is
D
det A=) " AC, (3.2.16)
i=1
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where k is an arbitrary integer from 1 through D. The C7% is (—)*"* times the determinant of
the (D — 1) x (D — 1) matrix formed from removing the ith row and kth column of A. (This
definition sums over the row numbers; it is actually equally valid to define it as a sum over
column numbers.)

As a 3 x 3 example, we have

@ boc d f a c a c
_ 142 242 342
det ;l;]; —b(—)+det{g l]+e(—)+det[g l]—l—h(—)*det{d f}'
(3.2.17)

Problem 3.11. Prove that the cofactor expansion definition of the determinant of a matrix
is equivalent to that in eq. (3.2.1). O

Pauli Matrices The 2 x 2 identity together with the Pauli matrices are Hermitian
matrices.

o_[10 L_Jo1 s [0 —i s_[1 0
0_{01, =1 0l = 0 | =y (3.2.18)

Moreover, any complex 2 X 2 matrix may be expressed as a linear combination of these {o#|u =
0,1,2,3}. This important fact has deep-ploughing applications, including the study of symme-
tries in 4D flat spacetime and (quantum) field theory.

Problem 3.12. Let p, = (po, p1, P2, p3) be a 4-component collection of complex numbers.
Verify the following determinant, relevant for the study of Lorentz symmetry in 4-dimensional
flat spacetime,

Po+ps p1—ip2
oh = ; : 3.2.19
Pu {pl‘sz Do — D3 } ( )
det p,o* = Z " pupy = P, (3.2.20)
0<p,v<3
where p,ot = ZOSMS?) puot and
1 0 0 0
0 -1 0 0
o —

=10 0 -1 o (3.2.21)

0O 0 0 -1

(This is the metric in 4 dimensional flat “Minkowski” spacetime.) Verify, for i, j, k € {1,2,3}
and e denoting the 2D Levi-Civita symbol,

deto’ =1, deto’=-1, Tr[¢’] =2 Tr[o’]=0 (3.2.22)
olo? =5+ Z kot eo’e = (o) = e(—a')e. (3.2.23)

1<k<3
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Also use the antisymmetric nature of the Levi-Civita symbol to aruge that
0:0,€7% = 0. (3.2.24)
Defining the exponential of a matrix X via the Taylor series
oy

exp X = —_—,
|
— 1

(3.2.25)

use these facts to derive the result:

= 0,0, =V0-90, (3.2.26)

1~ 0-¢ . (1.
= _ ]I X — ) pu—y ] - 9
Ccos (2\6\) ox2 — 1 7 sin (2] ])

= —iG‘H—QQ <in <%|§|) cos <§|0‘> + Zﬁ sin (%’

which is valid for complex {6;}. (Hint: Applying the first relation in eq. (3.2.23) to each term
in the Taylor series of the exponential.)

Show that any 2 x 2 complex matrix A can be built from p,o* by choosing the p,s appro-
priately. Then compute (1/2)Tr [p,o*c”], for v = 0,1,2,3, and comment on how the trace can
be used, given A, to solve for the p, in the equation

4|> ; (3.2.27)

puot = A. (3.2.28)
0

Inverse The inverse of the D x D matrix A is defined to be
ATTA=AATT =1 (3.2.29)

The inverse A~! of a finite dimensional matrix A is unique; moreover, the left A='A = I and
right inverses AA~! =T are the same object. The inverse exists if and only if (= iff) det A # 0.

Problem 3.13. Cramer’s rule Can you show the equivalence of equations (3.2.1) and
(3.2.16)? Can you also show that

D
Srdet A =" AL CY? (3.2.30)

That is, show that when k # [, the sum on the right hand side is zero. Explain why eq. (3.2.30)
informs us that

(A™H! = (det A)~ Zcﬂ (3.2.31)
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Hint: start from the left-hand-side, namely
det A = ¢, ;, A, .. AP (3.2.32)
= Ay (€ siienrdp Ay AT A A
where k is an arbitrary integer in the set {1,2,3,...,D — 1,D}. Examine the term in the

parenthesis. First shift the index ¢, which is located at the kth slot from the left, to the ¢th
slot. Then argue why the result is (—)™** times the determinant of A with the ith row and kth

column removed. Finally, remember A=!- A =1. ]
Problem 3.14. Why are the left and right inverses of (an invertible) matrix A the same?
Hint: Consider LA =1 and AR = T; for the first, multiply R on both sides from the right. [
Problem 3.15. Prove that (AT = (AT)"! and (A~1)T = (A")~L. O

3.3 Eigenvectors and Eigenvalues

If Aisa D x D matrix, v is its (D-component) eigenvector with eigenvalue \ if it obeys

Ao = M (3.3.1)
This means
(A", = A6 )0’ =0 (3.3.2)
has non-trivial solutions iff
Pp(A) =det (A — M) =0. (3.3.3)

Equation (3.3.3) is known as the characteristic equation. For a D x D matrix, it gives us a
Dth degree polynomial Pp()) for A, whose roots are the eigenvalues of the matrix A — the set
of all eigenvalues of a matrix is called its spectrum. For each solution for A\, we then proceed to
solve for the v* in eq. (3.3.2). That there is always at least one solution — there could be more
— for v® is because, since its determinant is zero, the columns of A — A are necessarily linearly
dependent. As already discussed above, this amounts to the statement that there is some sum of
multiples of these columns (= “linear combination”) that yields zero — in fact, the components
of v are precisely the coefficients in this sum. If {w;} are these columns of A — I,

A= = [wwy ... wp] = (A= A)v = Z w;v? = 0. (3.3.4)

J

(Note that, if 37 w;v’/ = 0 then . w;(Kv’) = 0 too, for any complex number K; in other words,
eigenvectors are only defined up to an overall multiplicative constant.) Every D x D matrix has
D eigenvalues from solving the Dth order polynomial equation (3.3.3); from that, you can then
obtain D corresponding eigenvectors. Note, however, the eigenvalues can be repeated; when this
occurs, it is known as a degenerate spectrum. Moreover, not all the eigenvectors are guaranteed
to be linearly independent; i.e., some eigenvectors can turn out to be sums of multiples of other
eigenvectors.
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The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic
equation. In detail, if we express eq. (3.3.3) as ZZD:O ¢;:\" = 0 (for appropriate complex constants
{g:}), then replace A — A’ (namely, the ith power of A with the ith power of A), we would find

Pp(A4) = 0. (3.3.5)

Any D x D matrix A admits a Schur decomposition. Specifically, there is some unitary matrix
U such that A can be brought to an upper triangular form, with its eigenvalues on the diagonal:

UTAU = diag(\y,...,A\p) + N, (3.3.6)

where N is strictly upper triangular, with N "j = 0 for j < ¢. The Schur decomposition can be
proved via mathematical induction on the size of the matrix.

Diagonalization A special case of the Schur decomposition occurs when all the off-
diagonal elements are zero. A D x D matrix A can be diagonalized if there is some unitary
matrix U such that

UTAU = diag(\y, ..., Ap), (3.3.7)

where the {\;} are the eigenvalues of A. Each column of U is filled with a distinct unit length
eigenvector of A. (Unit length means vfv = (v)*176;; = 1.) In index notation,

AijUjk = \U% = U o A, (No sum over k). (3.3.8)
In matrix notation,

AU = Udiag[)\l,)\g,...,/\D_l,)\D}. (339)

Here, Uj,C for fixed k, is the kth eigenvector, and Ay is the corresponding eigenvalue. By multi-
plying both sides with UT, we have

UTAU = D, D’ =\, (No sum over ). (3.3.10)
Equivalently,
A=UDU", (3.3.11)

Some jargon: the null space of a matrix M is the space spanned by all vectors {v;} obeying
M -v; = 0. When we solve for the eigenvector of A by solving (A — Al) - v, we are really solving
for the null space of the matrix M = A — A, because for a fixed eigenvalue A, there could be
more than one solution — that’s what we mean by degeneracy.

What types of matrices can be diagonalized? Real symmetric matrices can be
always diagonalized via an orthogonal transformation. Complex Hermitian matrices can always
be diagonalized via a unitary one. These statements can be proved readily using their Schur
decomposition. For, let A be Hermitian and U be a unitary matrix such that

UAUT = diag(\y, ..., Ap) + N, (3.3.12)
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where N is strictly upper triangular. Now, if A is Hermitian, so is UAUT, because (UAUT)T =
(UNTATUT = UAUT. Therefore,

(UAUN = UAUT = diag(A}, ..., \p) + NT =diag(\,...,A\p) + N. (3.3.13)

Because the transpose of a strictly upper triangular matrix returns a strictly lower triangular
matrix, we have a strictly lower triangular matrix NT plus a diagonal matrix (built out of the
complex conjugate of the eigenvalues of A) equal to a diagonal one (built out of the eigenvalues
of A) plus a strictly upper triangular N. That means N = 0 and A\; = ;. That is, any Hermitian
A is diagonalizable and all its eigenvalues are real.

Unitary matrices can also always be diagonalized. In fact, all its eigenvalues {\;} lie on the
unit circle on the complex plane, i.e., |\;| = 1. Suppose now A is unitary and U is another
unitary matrix such that the Schur decomposition of A reads

UAUT = M, (3.3.14)

where M is an upper triangular matrix with the eigenvalues of A on its diagonal. Now, if A is
unitary, so is UAUT, because

(UAUT)T(UAUT) UATUTUAUT = UATAUT = UUT =1L (3.3.15)
That means

MM=1 = (MM} =(M)"M,=> MM, =5;M,M, =6y, (3.3.16)

where we have recalled eq. (3.1.25) in the last equality. If w; denotes the ith column of M, the
unitary nature of M implies all its columns are orthogonal to each other and each column has
length one. Since M is upper triangular, we see that the only non-zero component of the first
column is its first row, i.e., w} = M’ = \;0}. Unit length means wle =1= |\|*>=1. That
w, is orthogonal to every other column w;>; means the latter have their first rows equal to zero;
MY MY = MY =0= M, =0forl#1-remember M, =), itself cannot be zero because it
lies on the unit circle on the complex plane. Now, since its first component is necessarily zero,
the only non-zero component of the second column is its second row, i.e., wh = M’ = A\pd%. Unit
length again means |\;|*> = 1. And, by demanding that wy be orthogonal to every other column
means their second components are zero: M_ZQM ) = = A\ M?  =0=M 2 =0 for | > 2 — where,
again, .M_Q2 = )\, cannot be zero because it lies on the complex plane unit circle. By induction on
the column number, we see that the only non-zero component of the 7th column is the th row.
That is, any unitary A is diagonalizable and all its eigenvalues lie on the circle: |A\i<;<p| = 1.

More generally, a complex square matrix A is diagonalizable if and only if it is normal, which
in turn is defined as a matrix that commutes with its adjoint, namely

[A, A=A AT - AT. A=0. (3.3.17)
We prove this in §(4.7). Note that, if A is Hermitian, it must be normal:

[A, AT = AAT — ATA = A7 - A2 = 0. (3.3.18)
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Likewise, unitary matrices are also normal; if ATA =1 = AAT,
[A, AT = AAT - ATA=T-T=0. (3.3.19)
Diagonalization example As an example, let’s diagonalize o2 from eq. (3.2.18).
A =i
—A

(We can even check Caley-Hamilton here: Py(0?) = (02)? =TI =T1—1=0; see eq. (3.2.23).) The
solutions are A = £1 and

1 — vl 0 .
{ P o } { i’ } = { X } = ol =il (3.3.21)

Py(\) = det [0 — Alyyo] = det { py } =X -1=0 (3.3.20)

The subscripts on v refer to their eigenvalues, namely
o*ve = Fuy. (3.3.22)

By choosing v> = 1/4/2, we can check (v?.)*v).0;; = 1 and therefore the normalized eigenvectors
are

vy = % { ? } . (3.3.23)

Furthermore you can check directly that eq. (3.3.22) is satisfied. We therefore have

GLADGL D[] e

-~

~
=Uft =U

An example of a matrix that cannot be diagonalized is

A= H 8 } . (3.3.25)

The characteristic equation is A?> = 0, so both eigenvalues are zero. Therefore A — A\l = A, and
00 ol 1 9 .
{ 10 ] [ .2 ] = [ 0 } = v’ =0, v” arbitrary. (3.3.26)

There is a repeated eigenvalue of 0, but there is only one linearly independent eigenvector (0, 1).
It is not possible to build a unitary 2 x 2 matrix U whose columns are distinct unit length
eigenvectors of o2.

Problem 3.16. Show how to go from eq. (3.3.8) to eq. (3.3.10) using index notation. [

Problem 3.17. Use the Schur decomposition to explain why, for any matrix A, Tr[A] is
equal to the sum of its eigenvalues and det A is equal to their product:

D D
Tr[Al=> N,  detA=][\ (3.3.27)
=1 =1

Hint: For det A, the key question is how to take the determinant of an upper triangular matrix.
]

27



Problem 3.18. For a strictly upper triangular matrix /N, prove that N multiplied to itself
any number of times still returns a strictly upper triangular matrix. ]

Problem 3.19. Can a strictly upper triangular matrix be diagonalized? (Explain.) Hint: What
is the eigensystem of such a matrix?

Problem 3.20. Suppose A = UXUT, where U is a unitary matrix. If f(z) is a function of z
that can be Taylor expanded about some point 2y, explain why f(A) = U f(X)U'. Hint: Can you
explain why (UBUT)* = UB*UT, for B some arbitrary matrix, U unitary, and £ = 1,2,3,...7 O

Problem 3.21. Can you provide a simple explanation to why the eigenvalues {\;} of a
unitary matrix are always of unit absolute magnitude; i.e. why are the |\;| = 17 ]

Problem 3.22. Simplified example of neutrino oscillations. We begin with the ob-
servation that the solution to the first order equation

10 (t) = E(t), (3.3.28)
for E some real constant, is
b(t) = e ey (3.3.29)

The 1)y is some arbitrary (possibly complex) constant, corresponding to the initial condition
¥(t = 0). Now solve the matrix differential equation

0N = HN(E),  N(t) = [ 223 } , (3.3.30)

with the initial condition — describing the production of vi-type of neutrino, say —

ez ]-[6] (33

where the Hamiltonian H is

_[p o 1
. cly 3.3.32
{ 7 0 1 : ( )
vy < [ R md + (m? = m3) cos(20) (mi — m3) sin(20) (3.3.33)
= (m% . mg) sin(26) m% + m% + (m% — m%) cos(20) |- 3.

The p is the magnitude of the momentum, m, » are masses, and 6 is the “mixing angle”. Then
calculate

2 2

P, = ‘N(t)T { (1) ] and Py, = ‘N(t)T [ 0 ] (3.3.34)

1

Express P,_,; and P;_,, in terms of Am? = m% — m% (In quantum mechanics, they respectively
correspond to the probability of observing the neutrinos v, and 15 at time ¢t > 0, given v, was
produced at t = 0.) Hint: Start by diagonalizing M = UT AU where

| cosf sind
U= { Csind cosf } ) (3.3.35)
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The UN(t) is known as the “mass-eigenstate” basis. Can you comment on why? Note that, in
the highly relativistic limit, the energy E of a particle of mass m is

2
E =P +m? —>p+72n—+0(1/p2). (3.3.36)
p
Note: In this problem, we have implicitly set h = ¢ = 1, where A is the reduced Planck’s constant

and c is the speed of light in vacuum. O]

Problem 3.23. Quadrupole Moments Show that, for N > 1 positive masses {m, > 0},
real position vectors {7}, and the #* denoting the dot product Z - Z, the second moments

N N
A = ngxéxg and  BY = Z my (693 — xja)) (3.3.37)
=1 =1

have strictly non-negative eigenvalues. Hint: Both A% and B% are real and symmetric. For all
eigenvectors {v}, consider v*A¥v? or v'BYv/. H

3.4 *2D Real Orthogonal Matrices

In this subsection we will illustrate what a real orthogonal matrix is by studying the 2D case
in some detail. Let A be such a 2 x 2 real orthogonal matrix. We will begin by writing its
components as follows

vt ?
A= [ Wl w? } : (3.4.1)
(As we will see, it is useful to think of v'? and w"? as components of 2D vectors.) That A is

orthogonal means AAT = 1.
vl 02 vl w! v-v U-w 10
{wl wz]‘[ﬁ w2]_[u7-27 zﬁ-tﬁ}_{01 ' (34.2)
This translates to: w? = w -4 = 1, > = v+ ¥ = 1 (length of both the 2D vectors are one);

and W - U= 0 (the two vectors are perpendicular). In 2D any vector can be expressed in polar
coordinates; for example, the Cartesian components of ¢ are

v" = r(cos ¢, sin @), r>0, ¢ €0,2m). (3.4.3)
But 92 = 1 means r = 1. Similarly,
w' = (cos¢/,sing’), ¢ €]0,27). (3.4.4)
Because ¢ and w are perpendicular,
T+ =cosg-cosd +sing-sing’ = cos(¢p — ¢') = 0. (3.4.5)
This means ¢ = ¢ + 7/2. (Why?) Furthermore

w' = (cos(¢ & 7/2),sin(¢ + 7/2)) = (Fsin(e), £ cos(¢)). (3.4.6)
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What we have figured out is that, any real orthogonal matrix can be parametrized by an angle
0 < ¢ < 27; and for each ¢ there are two distinct solutions.

Ri(¢) = { cosg - sing ] , Ry(¢) = {CQW sin ¢ ] . (3.4.7)

—sin¢g cos ¢ sing —cos¢

By a direct calculation you can check that R;(¢ > 0) rotates an arbitrary 2D vector clockwise
by ¢. Whereas, Ry(¢ > 0) rotates the vector, followed by flipping the sign of its y-component;
this is because

Ry(9) = { (1) _01 ] - Ri(9). (3.4.8)

In other words, the Ry(¢ = 0) in eq. (3.4.7) corresponds to a “parity flip” where the vector is
reflected about the z-axis.

Problem 3.24. What about the matrix that reflects 2D vectors about the y-axis? What
value of # in Ry(6) would it correspond to?

Find the determinants of R;(¢) and Ry(¢). You should be able to use that to argue, there
is no 6y such that Ry(6p) = R2(6p). Also verify that

Ri(¢) 1 (¢) = Ra(d+ &) (3.4.9)

This makes geometric sense: rotating a vector clockwise by ¢ then by ¢ should be the same as
rotation by ¢+¢’. Mathematically speaking, this composition law in eq. (3.4.9) tells us rotations
form the SOy group. The set of D x D real orthogonal matrices obeying R*R = I, including
both rotations and reflections, forms the group Op. The group involving only rotations is known
as SOp; where the ‘S’ stands for “special” (= determinant equals one). ]

Problem 3.25. 2 x 2 Unitary Matrices. Can you construct the most general 2 x 2
unitary matrix? First argue that the most general complex 2D vector ¥ that satisfies 71¢' = 1 is

v' = e (cos 0, e sin 0), $12,0 € ]0,27). (3.4.10)
Then consider ¥ = 0, where
w' = e (cos @, e sin6'), ¢l4,0 € [0,2m). (3.4.11)
You should arrive at
sin(0) sin(#')e®2=92) + cos(6) cos(#') = 0. (3.4.12)

By taking the real and imaginary parts of this equation, argue that

Gh=do, O=0 L. (3.4.13)
or
$h=dotm,  O=—0% g (3.4.14)
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From these, deduce that the most general 2 x 2 unitary matrix U can be built from the most
general real orthogonal one O(#) via

et 1 0

As a simple check: note that ¢'v' = @' = 1 together with ¥ = 0 provides 4 constraints
for 8 parameters — 4 complex entries of a 2 X 2 matrix — and therefore we should have 4 free
parameters left.

Bonus problem: By imposing det U = 1, can you connect eq. (3.4.15) toeq. (3.2.26)7 [

3.5 2D Unitary Matrices

In this section we will construct the most general 2 X 2 unitary matrix U , which satisfy

UtU = Tyyo = UUT. (3.5.1)
If we parametrize the matrix as
U=[a ], (3.5.2)
where « and ¥ are to be viewed as 2—component complex vectors, then
~y o~ TICTERTALTS 1 0
N AT
o= T8 de]_[10) 53

Notice, if U is unitary, so is el , for real ~; i.e., there is always an overall phase freedom. We
first note: for a unit norm vector @ obeying @'@ = |a'|> + |a?|?> = 1, its components may be
parametrized as d@ = ('™ cos 6, €2 sin f) for real angles a5 and 6. The @ and ¥ are therefore
expressible

@ = (€' cos(f),e"*sin(d)), (3.5.4)
U= (ew‘ll cos(f'), e sin(Q')) ; (3.5.5)

for real angles ay 9, o, and 0,60". We may use the overall phase freedom of U to set ap to 0.
The orthogonality relation between u and ¢ then reads

i =0=14v"d (3.5.6)
0 = e~ cos(f) cos(#') + €(®2792) sin(6) sin(#") (3.5.7)
0 = cos(f) cos(8') + e sin(#) sin(¢'), o = (ay — ay) + af. (3.5.8)

We may decompose this relation into the real part
0 = cos(f) cos(8') + cos(¢) sin(f) sin(8') (3.5.9)
as well as the imaginary part

= sin(¢) sin(6) sin(#"). (3.5.10)
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We are trying to determine « in terms of the parameters of ¢ (or vice versa) by making them
orthogonal, without specializing to specific forms of ¥. So we do not want to set sin# or sin &’
to zero. But that means

(2 — )+l =nm, n=0+1,+2,.... (3.5.11)
In turn, we have for odd n,
0 = cos(f) cos(6') — sin(f) sin(8') = cos(f + ¢'); (3.5.12)
while for even n,
0 = cos(f) cos(8') + sin(#) sin(8') = cos(0 — ¢'). (3.5.13)
Hence, for odd n = +1,4+3,45,...,

0 — —94—%7, m=+1,43 +5 47, ... (3.5.14)
and for even n = 0,£2,+4, ...,
0 =0+ %w. (3.5.15)

At this point, our 2 x 2 unitary matrix takes one of the following four forms:

o iy cos(f) T sin(6)
U=e |: ei(a'z—aﬁ)sjnw) - eio COS(@) (3_5.16)

or

(3.5.17)

b o { cos(6) +¢' sin(f) }

e'2=) gin(f)  +e' cos(6)

Since o) , are arbitrary, we may shift them by 7 to absorb/introduce an overall minus sign. That
means we have

= cos(f) —e™ sin(6)
U = 67 |: e-(

/
i(ah—ah) sin(@) A COS(Q) ] ) Y, Q1 2, 0 eR. (35.18)

YZ: The answer with + in the (1,2) component is wrong. Why? Multiplying this by
an appropriate phase factor, we obtain the general SU, matrix:

b — o [ e~ cos(f) —esin(f)

e~sin(f) e cos(H) ] ’ a,B,7€R. (3.5.19)

Problem 3.26. Special Unitary 2x2 Matrices: SU, Explain why the most general SU
matrix, with the ‘S’ = ‘special’ referring to an additional unit determinant det U = 1 constraint,
is given by eq. (3.5.19) with v = 0:

b e~ cos(f) —esin(f)
e~ sin(f) e cos(0)
= puot; (3.5.20)

} , v,a),,0 € R
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where
pu = (cos(B) cos(f), —isin(a) sin(f), —i cos(a) sin(f), —isin(5) cos(h)) . (3.5.21)
The {o*} are the unit and the Pauli matrices in eq. (3.2.18). Explain using eq. (?7) why
" pupy = 1. (3.5.22)

]

Problem 3.27. Relation Between SU, and SO, Matrices Show that the SUy matrix
U related to its SOy cousin O via

e 01 A1 0
U= 67 |: 0 eia :| . O . |: 0 Bii(aiﬁ) :| . (3523)
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4 Linear Algebra

4.1 Definition

Loosely speaking, the notion of a vector space — as the name suggests — amounts to abstracting
the algebraic properties — addition of vectors, multiplication of a vector by a number, etc. —
obeyed by the familiar D € {1,2,3,...} dimensional Euclidean space R”. We will discuss the
linear algebra of vector spaces using Paul Dirac’s bra-ket notation. This will not only help you
understand the logical foundations of linear algebra and the matrix algebra you encountered
earlier, it will also prepare you for the study of quantum theory, which is built entirely on the
theory of both finite and infinite dimensional vector spaces.’

We will consider a vector space over complex numbers. A member of the vector space will
be denoted as |a); we will use the words “ket”, “vector” and “state” interchangeably in what
follows. We will allude to aspects of quantum theory, but point out everything we state here
holds in a more general context; i.e., quantum theory is not necessary but merely an application
— albeit a very important one for physics. For now « is just some arbitrary label, but later
on it will often correspond to the eigenvalue of some linear operator. We may also use o as
an enumeration label, where |a) is the ath element in the collection of vectors. In quantum
mechanics, a physical system is postulated to be completely described by some |«) in a vector
space, whose time evolution is governed by some Hamiltonian. (The latter is what Schrédinger’s
equation is about.)

Here is what defines a “vector space over complex numbers”. It is a collection of states
{la),18),17), ...} endowed with the operations of addition and scalar multiplication subject to
the following rules.

1. Ax1: Addition Any two vectors can be added to yield another vector

la) +[8) = |)- (4.1.1)

Addition is commutative and associative:
@) +18) = 18) + o) (4.12)
la) +(I8) + 7)) = (le) +18)) + |) - 4.1.3)

2. Ax2: Additive identity (zero vector) and existence of inverse There is a zero
vector |zero) — which can be gotten by multiplying any vector by 0, i.e.,

0|a) = |zero) (4.1.4)

— that acts as an additive identity.” Namely, adding |zero) to any vector returns the vector
itself:

|zero) + [B) = |B) . (4.1.5)

6The material in this section of our notes was drawn heavily from the contents and problems provided in
Chapter 1 of Sakurai’s Modern Quantum Mechanics.

In this section we will be careful and denote the zero vector as |zero). For the rest of the notes, whenever
the context is clear, we will often use 0 to denote the zero vector.
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For any vector |a) there exists an additive inverse; if + is the usual addition, then the
inverse of |a) is just (—1) |a).

la) + (= |av)) = |zero) . (4.1.6)

3. Ax3: Multiplication by scalar Any ket can be multiplied by an arbitrary complex
number ¢ to yield another vector

cla) =1v). (4.1.7)

(In quantum theory, |a) and c|a) are postulated to describe the same system.) This
multiplication is distributive with respect to both vector and scalar addition; if a and b
are arbitrary complex numbers,

a(la) +16)) = ala) +alB) (4.1.8)
(a+0b)|a) =ala) +bla). 4.1.9
Note: If you define a “vector space over scalars,” where the scalars can be more general objects
than complex numbers, then in addition to the above axioms, we have to add: (I) Associativity of
scalar multiplication, where a(b|a)) = (ab) |a) for any scalars a, b and vector |«); (II) Existence
of a scalar identity 1, where 1|a) = |a).
Examples The Euclidean space R? itself, the space of D-tuples of real numbers

2 D)

@) = (a',d?, ... a"), (4.1.10)

with + being the usual addition operation is, of course, the example of a vector space. We shall
check explicitly that R” does in fact satisfy all the above axioms. To begin, let

17) = (v', 0%, .. 0P),
|w) = (wh,w?, ..., wP) and (4.1.11)
1Z) = (z', 2%,...,2P) (4.1.12)

be vectors in RP.
1. Addition Any two vectors can be added to yield another vector
|0) + @) = (v + ', 0P +wP) = T+ 0 (4.1.13)

Addition is commutative and associative because we are adding/subtracting the vectors
component-by-component:

|0) + |w) = |v + > (0" + w0+ w?)
= (w' o wP 40P
= |y + |) | W + V), (4.1.14)
17) + |@) + |Z) = (v +w' + 2!, .. 0P 4w 4 2P)
= (v' + (w' —i—x) P 4 (WP 2P))
= (v +wh) +2', ..., (P +wP) +2P)
= |0) + (\w)Hx)) (\U)+|w>)+|x>:|6+w+f>. (4.1.15)
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2. Additive identity (zero vector) and existence of inverse There is a zero vector
|zero) — which can be gotten by multiplying any vector by 0, i.e.,

0]7) = 0(v',...,v") =(0,...,0) = |zero) (4.1.16)

— that acts as an additive identity. Namely, adding |zero) to any vector returns the vector
itself:

|zero) + [w) = (0,...,0) + (w', ..., wP) = |&). (4.1.17)

For any vector |Z) there exists an additive inverse; in fact, the inverse of |Z) is just

(=1 [Z) = |=2).
Z) + (= |2)) = (2*,...,27) — (2, ..., 2") = |zero) . (4.1.18)

3. Multiplication by scalar Any ket can be multiplied by an arbitrary real number ¢
to yield another vector

= (cv ,...,ch) = |cv) . (4.1.19)

This multiplication is distributive with respect to both vector and scalar addition; if ¢ and
b are arbitrary real numbers,

a(|0) 4 |0)) = (av' + aw', av? + aw?, ..., av” + aw®)
= |a?) + |aW) = a |U) + a |W) (4.1.20)
(a+0)|7) = (az' 4+ ba', ... ax® + b2®)
= |aZ) + |bZ) = a|Z) + b|Z) . (4.1.21)

]

The following are some further examples of vector spaces.

1. The space of polynomials with complex coefficients.

2. The space of square integrable functions on R” (where D is an arbitrary integer greater
or equal to 1); i.e., all functions f(Z) such that [,, d”Z|f()]* < cc.

3. The space of all homogeneous solutions to a linear (ordinary or partial) differential equa-
tion.

4. The space of M x N matrices of complex numbers, where M and N are arbitrary integers
greater or equal to 1.

Problem 4.1. Prove that the examples in (1), (3), and (4) are indeed vector spaces, by
running through the above axioms. [
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Linear (in)dependence, Basis, Dimension Suppose we pick N vectors from a vector
space, and find that one of them (say, |N)) can be expressed as a linear combination (or,
superposition) of the rest,

N-1

IN) =iy, (4.1.22)

=1

where the {x'} are complex numbers. Then we say that this set of N vectors are linearly
dependent. Equivalently, we may state that |1) through |N) are linearly dependent if a non-
trivial superposition of them can be found to yield the zero vector:

N

> i) = |zero), I (4.1.23)

i=1

That equations (4.1.22) and (4.1.23) are equivalent, is because — by assumption, ¢V # 0 — we
can divide eq. (4.1.23) throughout by ¢V; similarly, we may multiply eq. (4.1.22) by V.
Suppose we have picked D vectors {|1),|2),|3),...,|D)} such that they are linearly indepen-
dent, i.e., no vector is a linear combination of any others, and suppose further that any arbitrary
vector |a) from the vector space can now be expressed as a superposition of these vectors

la) = Zc iy,  {x'eC}. (4.1.24)

In other words, we now have a maximal number of linearly independent vectors — then, D is
called the dimension of the vector space. The {|i)|i = 1,2,...,D} is a complete set of basis
vectors; and such a set of (basis) vectors is said to span the vector space.® It is worth reiterating,
this is a maximal set because — if it were not, that would mean there is some additional vector
|a) that cannot be written as eq. (4.1.24).

Example For instance, for the D-tuple |@) = (a!,...,a”) from the real vector space of
R, we may choose

1) = (1,0,0,...), |2) = (0,1,0,0,...),
3) =(0,0,1,0,0,...), ... [D)=(0,0,...,0,0,1). (4.1.25)

Then, any arbitrary |@) can be written as

@) = (a',...,a") = Za by (4.1.26)

The basis vectors are the {|i)} and the dimension is D. Additionally, if we define

%) = (1,1,0,...,0), (4.1.27)
@) = (1,-1,0,...,0), (4.1.28)
@) = (1,0,0,...,0). (4.1.29)

8The span of vectors {|1),...,|D)} is the space gotten by considering all possible linear combinations

{2, ciy|ef e ).
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We see that {|v), |wW)} are linearly independent — they are not proportional to each other — but
{|V) ,|wW) ,|u)} are linearly dependent because

@) = = [3) + = |). (4.1.30)
2 2

Problem 4.2. Is the space of polynomials of complex coefficients of degree less than or
equal to (n > 1) a vector space? (Namely, this is the set of polynomials of the form P,(x) =
co+ 1z + -+ - 4 ¢z, where the {¢;|i = 1,2,...,n} are complex numbers.) If so, write down a
set of basis vectors. What is its dimension? Answer the same questions for the space of D x D
matrices of complex numbers. O]

Vector space within a vector space Before moving on to inner products, let us note
that a subset of a vector space is itself a vector space — i.e., a subspace of the larger vector space
— if it is closed under addition and multiplication by complex numbers. Closure means, if |a)
and |3) are members of the subset, then ¢; |a) + ¢3 |3) are also members of the same subset for
any pair of complex numbers c; 5.

In principle, to understand why closure guarantees the subset is a subspace, we need to run
through all the axioms in Ax1 through Ax3 above. But a brief glance tells us, the axioms in Ax1
and Ax3 are automatically satisfied when closure is obeyed. Furthermore, closure means — |«)
(i.e., the inverse of |«)) must lie within the subset whenever |«) does, since the former is —1 times
|a). And that in turn teaches us, the zero vector gotten from superposing |a)+ (—1) |a) = |zero)
must also lie within the subset. Namely, the set of axioms in Ax2 are, too, satisfied.

Ezamples The space of vectors {|@) = (a',a?)} in a 2D real space is a subspace of the
3D counterpart {|@) = (a',a? a®)}; the former can be thought of as the latter with the third
component held fixed, a® = same constant for all vectors. It is easy to check, the 2D vectors are
closed under linear combination.

We have already noted that the set of M x M matrices form a vector space. Therefore,
the subset of Hermitian matrices over real numbers; or (anti)symmetric matrices over complex
numbers; must form subspaces. For, the superposition of Hermitian matrices {ﬁ 1 ﬁg, ... } with
real coefficients yield another Hermitian matrix

~ ~\T ~ ~
(ClHl + CQHQ) = ClHl + CQHQ, C1,2 € ]R, (4131)

whereas the superposition of (anti)symmetric ones with complex coefficients return another
(anti)symmetric matrix:

~ ~\T ~ ~ ~ ~

(ClHl + CQHQ) = ClHl -+ CQHQ, C1,2 € (C, HEQ = HLQ, (4132)
~ ~\T ~ ~ ~

(ClHl + CQH2> = —(ClHl + CQHQ), C1,2 eC H12 = _HLQ. (4133)

4.2 Inner Products

In Euclidean D-space R the ordinary dot product, between the real vectors |@) = (a!,...,a
and |b) = (b',...,b"), is defined as

b= i = §;;a't (4.2.1)
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The inner product of linear algebra is again an abstraction of this notion of the dot product,
where the analog of @ - b will be denoted as (a@[b). Like the dot product for Euclidean space,
the inner product will allow us to define a notion of the length of vectors and angles between
different vectors.

Dual/‘bra’ space Given a vector space, an inner product is defined by first introducing
a dual space (aka bra space) to this vector space. Specifically, given a vector |a) we write its
dual as («|. We also introduce the notation

la) = (af. (4.2.2)
Importantly, for some complex number ¢, the dual of ¢|a) is
(cla))t = ¢ {a]. (4.2.3)
Moreover, for complex numbers a and b,
(ala) +0]8)" = a* (a] +b" (3]. (4.2.4)

Since there is a one-to-one correspondence between the vector space and its dual, observe that
this dual space is itself a vector space.

Now, the primary purpose of these dual vectors is that they act on vectors of the original
vector space to return a complex number:

(a] B) € C. (4.2.5)

You will soon see a few examples below.
Definition. The inner product is now defined by the following properties. For an
arbitrary complex number c,

(a (18) + 7)) = (&l B) + (al7) (4.2.6)
(o] (c]B)) = c(al B) (4.2.7)
(a] B)" = (a] B) = (Bl a) (4.2.8)
(o) >0 (4.2.9)
and
(ala) =0 (4.2.10)

if and only if |a) is the zero vector.

Some words on notation here. Especially in the math literature, the bra-ket notation is not
used. There, the inner product is often denoted by («, ), where « and 8 are vectors. Then the
defining properties of the inner product would read instead

(a, b8 + ¢y) = b(a, B) + c(a, ), (for any constants b and ¢), (4.2.11)
(a,8)" = (e, B) = (B, ), (4.2.12)
(v, ) > 0; (4.2.13)
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and
(o,a) =0 (4.2.14)
if and only if « is the zero vector. In addition, notice from equations (4.2.11) and (4.2.12) that
(bB + ¢y,a) = b" (B, ) + (7, ). (4.2.15)

Example: Dot Product We may readily check that the ordinary dot product does, of
course, satisfy all the axioms of the inner product. Firstly, let us denote

@) = (a*,d?, ..., a"), (4.2.16)
‘5> — (01,82, .., bP), (4.2.17)
&) = (', ..., cP); (4.2.18)
where all the components a’, b, ... are now real. Next, define
(@l 5> —d-b=a"b. (4.2.19)

Then we may start with eq. (4.2.6): (@] (|b) + |c)) = (@] b+ 5> —d-b+a-c= (d 5> + (d| ).
Second, (] (c’l;>) — (@ cz?> = ¢(@-b) = ¢ (@ 5>. Third, (d| E> —Gb=b-a=(ba)= <5 a‘>.
Fourth, (@|d@) = d-d =)_,(a")? is a sum of squares and therefore non-negative. Finally, because

(d| @) is a sum of squares the only way it can be zero is for every component of @ to be zero;
moreover, if @ is 0 then (@|a) = 0.

Problem 4.3. Prove that (o] «) is a real number. Hint: See eq. (4.2.8) O

The following are examples of inner products.

e Take the D-tuple of complex numbers |@) = (a!,...,aP) and ‘5> = (BY,...,B"); and
define the inner product to be

(@ 5> =3 (@) B = 5oty = alh. (4.2.20)

i=1

e Consider the space of D x D complex matrices. Consider two such matrices X and Y and
define their inner product to be

<)?‘ f/> =Ty [)?Tﬂ . (4.2.21)
Here, Tr means the matrix trace — i.e., summation over the diagonal components —

D
Tr (M) =) M, =M (4.2.22)
=1

and X' is the matriz adjoint of X.
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e Consider the space of polynomials. Suppose |f) and |g) are two such polynomials of the
vector space. Then

(fg) = / e f(@)'o) (4.2.23)

defines an inner product. Here, f(x) and g(x) indicates the polynomials are expressed in
terms of the variable x.

Problem 4.4. Prove the above examples are indeed inner products. [
Problem 4.5. Prove the Cauchy-Schwarz inequality:
2
(ol o) (B 8) = [{al B)I". (4.2.24)
The analogy in Euclidean space is |Z]?|7]? > |Z - ¢]?. Hint: Start with
({af + ¢ (B]) (o) +¢|B)) = 0. (4.2.25)
for any complex number ¢. (Why is this true?) Now choose an appropriate ¢ to prove the
Schwarz inequality. ]
Orthogonality Just as we would say two real vectors in R are perpendicular (aka orthog-

onal) when their dot product is zero, we may now define two vectors |o) and |3) in a vector
space to be orthogonal when their inner product is zero:

(al B) = 0= (8] a). (4:2.26)
We also call the positive square root \/ (a|a) the norm of the vector |a); recall, in Euclidean
space, the analogous || = V& -Z. Given any vector |«) that is not the zero vector, we can

always construct a vector from it that is of unit length,

) = o = (ala)y = 1. (4.2.27)
{ala)
Orthonormal Basis Suppose we are given a set of basis vectors {|i’)} of a vector space.

Through what is known as the Gram-Schmidt process, one can always build from them a set
of orthonormal basis vectors {|i)}; where every basis vector has unit norm and is orthogonal to
every other basis vector,

(ilj) =85 (4.2.28)

As you will see, just as vector calculus problems are often easier to analyze when you choose an
orthogonal coordinate system, linear algebra problems are often easier to study when you use an
orthonormal basis to describe your vector space. If {|i)} form an orthonormal basis, any vector
|v) should be expandable as

) =27 1), (4.2.29)

41



where the {7} are complex numbers. Projecting both sides with (j| and exploiting the orthonor-
mality condition (j|i) =47,

(17 =7". (4.2.30)

This in turn means

) = Z 15) (il 7) - (4.2.31)

Compare this with the vector calculus expression ¥ = ), v'e;, where {€;} are the unit vectors
in the i-th direction.

Problem 4.6. Suppose |a) and |3) are linearly dependent — they are scalar multiples of
each other. However, their inner product is zero. What are |a) and |5)7 O
Problem 4.7. Projection Process If ¥ and @ are vectors in R, verify that

w

||

is perpendicular to . In index notation, if we denote @' = w’ /|,
v =0 — W (@) = (69 — wa) v (4.2.33)
(In Chapter §(9.7) below, we shall see that § — @w'w’ describes the geometry of the D — 1 space
orthogonal to w.) Write down the corresponding o/, , the component of « perpendicular to .
Now, let {|1),|2),...,|N)} be a set of N orthonormal vectors. Let |a) be an arbitrary vector

lying in the same vector space. Show that the following vector constructed from |«) is orthogonal

to all the {])}.

o) = la) = 1) Gl e (4.2.34)

This result is key to the following Gram-Schmidt process. [

Gram-Schmidt Let {|aq), |ag), ..., |ap)} be a set of D