# Imaging the Moon, Planets & Sun with a Digital Camera



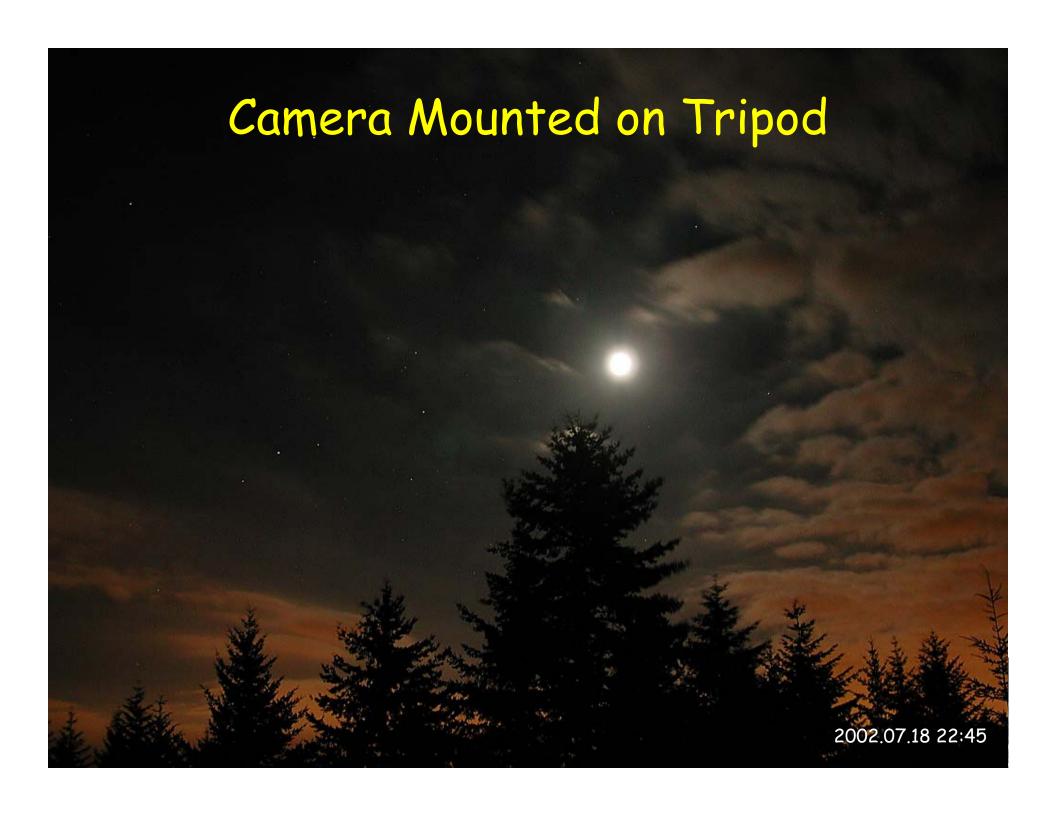
David Haworth, Copyright 2003

#### Scope

Digital Cameras with lens that do not remove

#### Lunar Imaging is a Good Starting Point

- Tt is 2<sup>nd</sup> brightest object
  - The Sun requires a expensive filter
- Wide variety of equipment
  - Camera Mounted on Tripod
  - Telescope low, median and high resolution
- Noticeable changes within hours
- Very good learning for other imaging


- Focus at infinity
- Vary the exposure times
- Vary the optical zoon
- Use self timer or
- Remote shutter



Jupiter

Moon

· Venus Mars





2x Telephoto Lens



Image 85 x 112 pixels 1/250 sec.







#### Tips

- Lens converts
  - Manual focus distances are not correct
- Remote release cable
  - Improves productivity

# Imaging with Telescopes

Orion Short Tube



Orion Argonaut



## Orion Short Tube Telescope

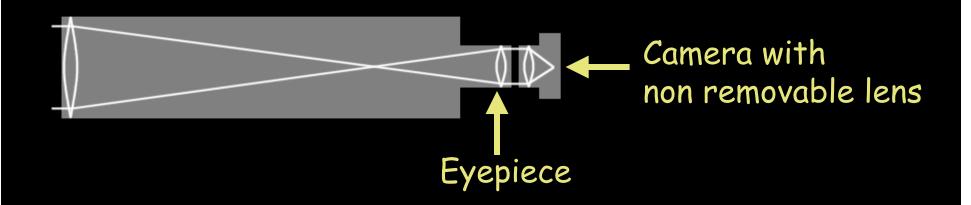
- Achromatic refractor
- 80mm aperture
- 400mm focal length
- f/5 f-ratio

Orion SVD mount

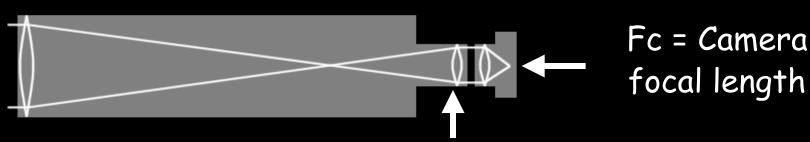


# Orion Argonaut Telescope

- Maksutov-Cassegrain
- 150mm aperture
- 1800mm focal length
- f/12 f-ratio


Orion EQ-3 Mount




# Tip: Use Vibration Suppression Pads



Camera is aimed into the eyepiece



Basic Formulas



D = Telescope aperture

Fep = Eyepiece focal length

Ft = Telescope focal length

ft = Telescope focal ratio = Ft / D

Magnification = Ft / FepProjection Magnification = Fc / FepEffective Focal Length =  $Ft \times Projection Magnification$ Effective f-ratio =  $ft \times Projection Magnification$ 

# Projection Magnification = Fc / Fep

| Ер  | Fc = 8.2 mm | Fc = 23.4 mm |
|-----|-------------|--------------|
| mm  | M           | M            |
| 9.5 | 0.86        | 2.46         |
| 10  | 0.82        | 2.34         |
| 14  | 0.59        | 1.67         |
| 18  | 0.46        | 1.30         |
| 20  | 0.41        | 1.17         |
| 24  | 0.34        | 0.98         |
| 26  | 0.32        | 0.90         |

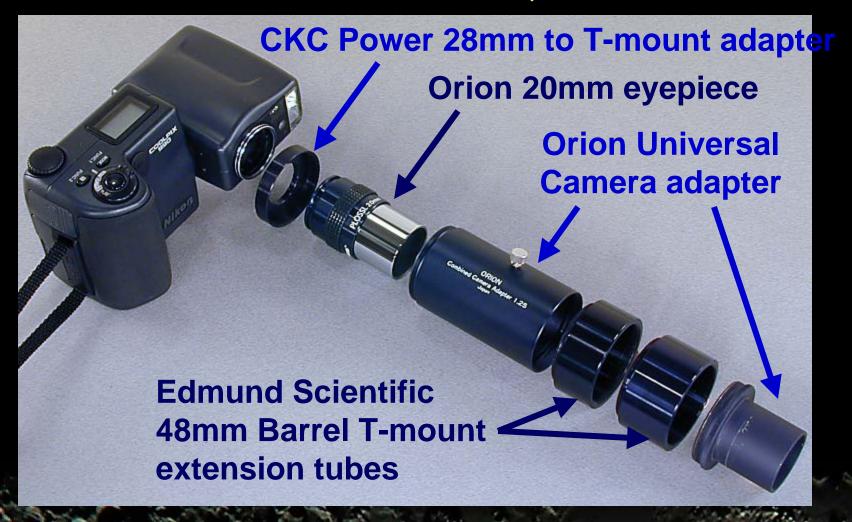
### Orion Short Tube F = 400 mm, f = 5

| Ер  | Zoon Out |                 | Zoon In |                 |
|-----|----------|-----------------|---------|-----------------|
| mm  | Fmm      | <i>f</i> -ratio | Fmm     | <i>f</i> -ratio |
| 9.5 | 345      | 4.3             | 985     | 12.3            |
| 10  | 328      | 4.1             | 936     | 11.7            |
| 14  | 234      | 2.9             | 669     | 8.4             |
| 18  | 182      | 2.3             | 520     | 6.5             |
| 20  | 164      | 2.1             | 468     | 5.9             |
| 24  | 137      | 1.7             | 390     | 4.9             |
| 26  | 126      | 1.6             | 360     | 4.5             |



## Orion Argonaut F = 1800mm, f = 12

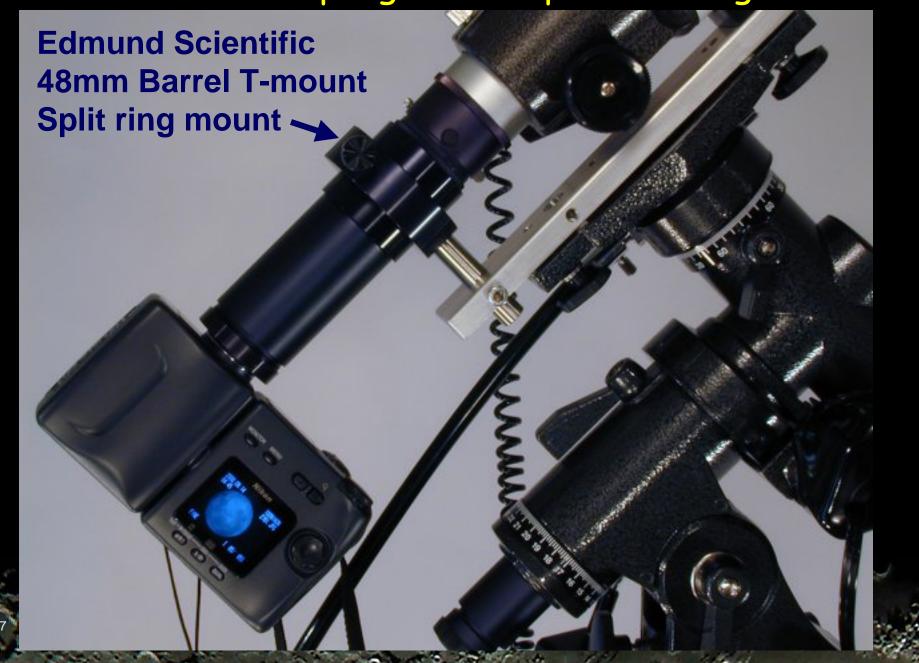
| Ер  | Zoon Out |                 | Zoon In |                 |
|-----|----------|-----------------|---------|-----------------|
| mm  | Fmm      | <i>f</i> -ratio | Fmm     | <i>f</i> -ratio |
| 9.5 | 1554     | 10.4            | 4434    | 29.6            |
| 10  | 1476     | 9.8             | 4212    | 28.1            |
| 14  | 1054     | 7.0             | 3009    | 20.1            |
| 18  | 820      | 5.5             | 2340    | 15.6            |
| 20  | 738      | 4.9             | 2106    | 14.0            |
| 24  | 615      | 4.1             | 1755    | 11.7            |
| 26  | 568      | 3.8             | 1620    | 10.8            |




- Camera is aimed into the eyepiece
  - Hold the camera over the eyepiece
  - Set camera on tripod next to telescope
  - Use bracket attached to eyepiece
  - Use camera adapter
  - Use eyepiece with adapter






Afocal Camera Adapter



Afocal Camera Adapter



#### Afocal Coupling Telescope Mounting



Eyepieces with Adapter or Threads



Afocal Eyepiece with Adapter





Afocal Eyepieces with 28mm Threads



18mm Eyepiece

24mm

Eyepiece

Afocal Eyepiece with 28mm Threads



Afocal Eyepiece with 28mm Threads



Afocal Eyepiece with 28mm Threads



# Vignetting when Zoom Out



## Imaging Setup

- Polar alignment
- Power
  - Camera
  - Dew heater



## Tip: Cool Down

Plan for cool down time



### Nikon Camera Settings

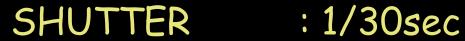
- Manual mode
- Manual focus at infinity
- White balance: sunny
- Image sharpening: high
- Aperture wide open

### Tip: Use Lowest ISO Setting

- Take test images
  - At different ISO settings
- More noise at higher ISO settings
  - 200 and 400

### Tip: Use Lowest ISO Setting




SHUTTER : 1/125sec

SENSITIVITY: ISO400



SHUTTER : 1/60sec

SENSITIVITY: ISO200



SENSITIVITY: ISO100

### Tip: Use Lowest ISO Setting



SHUTTER : 1/125sec

SENSITIVITY: ISO400



SHUTTER : 1/60sec

SENSITIVITY: ISO200

SHUTTER: 1/30sec

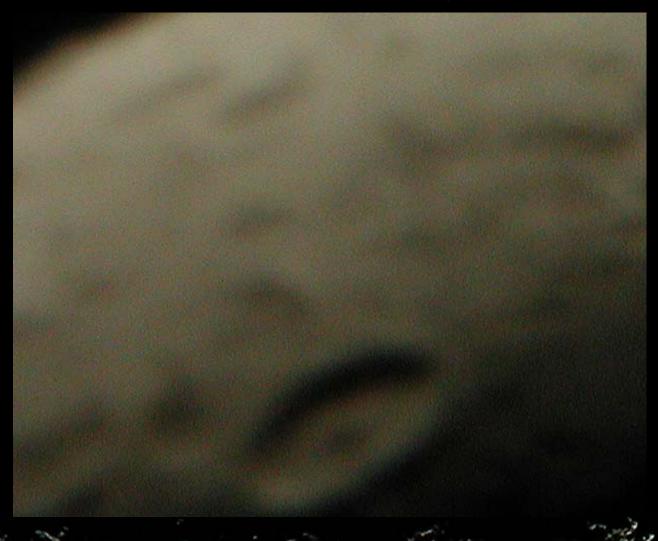
SENSITIVITY: ISO100

### Focusing

- Manual focus at infinity
- Image sharpening: high
- Maximum digital zoom

## Tip: Electric Focuser

JMI NGF-S DRO Focuser

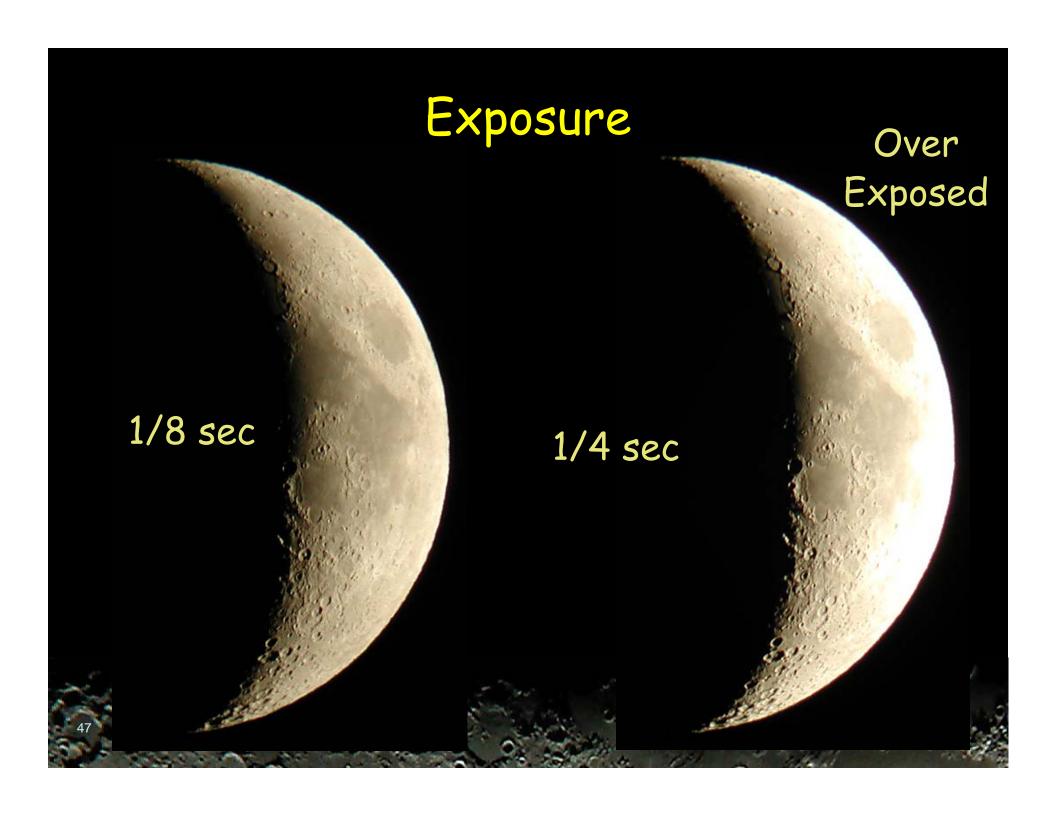



### Steps to a Good Sharp Exposure

Everything is Dependent on Seeing Conditions

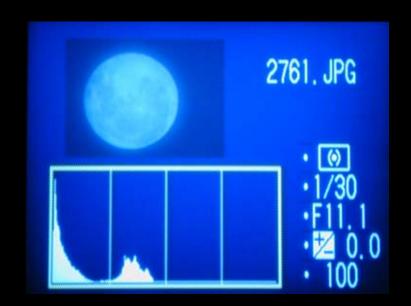
Image Sharpness
Image Exposure
Exposure Time
Camera Zoom
Eyepiece
Telescope
Seeing

# Poor Seeing




# Good Seeing, No Image Processing




# Good Seeing, Image Sharpen





### Image Exposure

Take one image & check histogram



# 8 sec Image Exposure Problems

Achromatic Refractor
False Color

Camera Noise

Lens Flair

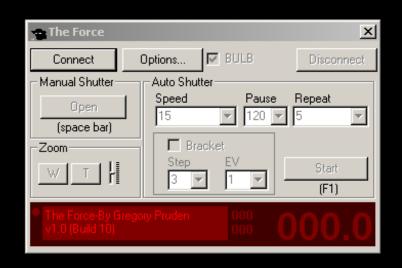
#### Shutter Release

- Shutter-release button
- Self-timer
- Shutter Release Controller
- Shutter Release Software with PC

### Remote Release Cable

#### Nikon MC-EU1 Remote Cord




#### Shutter Release Controller

- DigiSnap 2000
  - http://www.harbortronics.com/digimain.htm

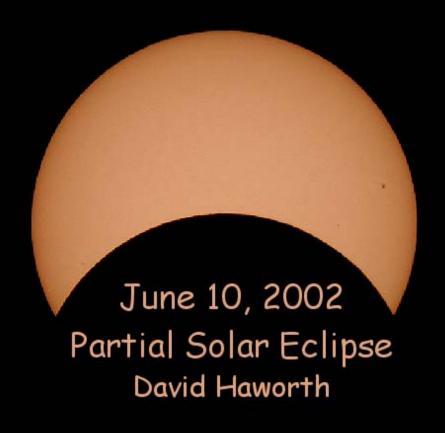


### Shutter Release Software

- The Force
  - http://velatron.com/dca/TheForce/






### Shutter Release Software

- Digital-Camera.dk
  - http://www.digital-camera.dk/





## Partial Solar Eclipse Movie



### Partial Solar Eclipse Movie

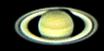
- June 10, 2002
- 130 images @ 1 minute apart
  - 17:00 to 19:08
- Nikon 990 Digital Camera
- Orion 80mm ShortTube refractor

### Partial Solar Eclipse Movie Steps

- Convert JPG image files to BMP
  - IrfranView
- Align
  - MaxIm DL
- Resize from 2048 x 1536 to 640 x 480
  - IrfranView

### Partial Solar Eclipse Movie Steps

- Sharpen
  - IrfranView
- Histogram adjust
  - Paint Shop Pro
- Create Windows Media Video WMV file
  - Windows XP Move Maker 2


# Partial Solar Eclipse Movie

#### Planets

Real Small



Requires high magnification



Stacking is must



### Planet Stacking

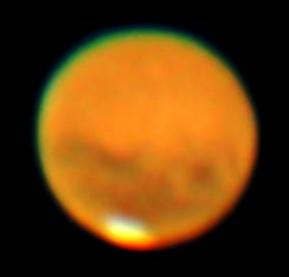
Best Image

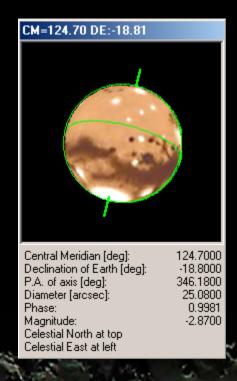
Worst Image



#### Stacked Images

Best Image 2 Stacked 4 Stacked 8 Stacked 16 Stacked


22 Stacked 32 Stacked 64 Stacked 88 Stacked


22 Stacked & Processed

#### **OSP 2003 Mars**

Wednesday August 27, 3:11 am

### 29 Stacked Images 1/125 sec





#### **OSP 2003 Mars**

- Nikon 990
  - 29 Stacked Images 1/125 sec
  - Wednesday August 27, 3:11 am

- ToUcam webcam
  - 660 Stacked Images 1/125 sec
  - Thursday August 28, 11:10 pm

#### More Information

Will post presentation & references on website by end of September

http://www.stargazing.net/david